Soils, Sec 3 Remediation and Management of Contaminated Or Degraded Lands Research Article

Soils, Sec 3 Remediation and Management of Contaminated Or Degraded Lands Research Article

ELECTRONIC SUPPLEMENTARY MATERIAL

soils, sec 3 • remediation and management of contaminated or degraded lands • research article

Sorption of polycyclic aromatic hydrocarbons to soils enhanced by heavy metals:perspective of molecular interactions

Xiao Liang1, 2•Lizhong Zhu1,2•Shulin Zhuang1

Received: 12 October 2015 / Accepted: 14 December 2015

© Springer-Verlag Berlin Heidelberg 2015

Responsible editor: Jan Schwarzbauer

1Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China

2Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China

Lizhong Zhu

Table S1 Potential interactions in aromatic π-systems

Interaction / Energy (kJ mol-1) / References
Van der Waals forces / <4 / (Halgren 1996)
N-π EDA / 25-40 / (Haderlein and Schwarzenbach 1993)
Self-stacking / 4-30 / (Boyd et al. 2001; Meyer et al. 2003)
H bonding / 5-50 / (Emsley 1980; Feyereisen et al. 1996;
Jeffrey 1997)
Electrostatic / 11-90 / (Gorb et al. 2000; Li et al. 2004)
π-π EDA / 17-111 / (Hong et al. 2003; Meyer et al. 2003;
Orabi and Lamoureux 2012)

Table S2 Bondlength (r) and interaction energy (G) between PAHs and heavy metal cations at theB3LYP/def2svplevel

PAH / Metal / r(Å)a / G (kcal mol-1)
Naphthalene / Cu(II) / 2.17 / -14.69
Pb(II) / 2.80 / -84.52
Cr(III) / 3.78 / -139.3
Phenanthrene / Cu(II) / 2.12 / -15.54
Pb(II) / 2.85 / -90.89
Cr(III) / 3.76 / -141.2
Pyrene / Cu(II) / 2.12 / -11.69
Pb(II) / 2.80 / -93.77
Cr(III) / 3.80 / -150.5

Fig.S1 Sorption of 1.0 mmol L-1heavy metal cations to soil 1 and soil 2, the solid-to-liquid ratio (w/v): (a) 0.8g/8mL; (b) 0.4g/20mL; (c) 0.05 g/20mL

Fig. S2 The binding conformationsof PAH molecules with heavy metal cations in the aqueous solution: (a) Cu(II)-Nap, (b) Cu(II)-Phe, (c) Cu(II)-Pyr, (d)Pb(II)-Nap, (e)Pb(II)-Phe, (f)Pb(II)-Pyr, (g) Cr(III)-Nap, (h) Cr(III)-Phe, (i) Cr(III)-Pyr. Nap, Phe and Pyr were the abbreviations of naphthalene, phenanthrene and pyrene

References

Boyd SA, Sheng G, Teppen BJ, Johnston CT (2001) Mechanisms for the adsorption of substituted nitrobenzenes by smectite clays. Environ SciTechnol 35:4227-4234

Emsley J (1980) Very strong hydrogen bonding. ChemSoc Rev 9:91-124

Feyereisen MW, Feller D, Dixon DA (1996) Hydrogen bond energy of the water dimer. J Phys Chem 100:2993-2997

Gorb L, Gu J, Leszczynska D, Leszczynski J (2000) The interaction of nitrobenzene with the hydrate basal surface of montmorillonite: an ab initio study. Phys ChemChem Phys 2:5007-5012

Haderlein SB, Schwarzenbach RP (1993) Adsorption of substituted nitrobenzenes and nitrophenols to mineral surfaces. Environ SciTechnol 27:316-326

Halgren TA (1996) Merck molecular force field. II. MMFF94 van der Waals and electrostatic parameters for intermolecular interactions. J ComputChem 17:520-552

Hong L, Ghosh U, Mahajan T, Zare RN, Luthy RG (2003) PAH sorption mechanism and partitioning behavior in lampblack-impacted soils from former oil-gas plant sites. Environ SciTechnol 37:3625-3634

Jeffrey GA (1997) An introduction to hydrogen bonding, 12. Oxford university press New York

Li H, Teppen BJ, Johnston CT, Boyd SA (2004) Thermodynamics of nitroaromatic compound adsorption from water by smectite clay. Environ SciTechnol 38:5433-5442

Meyer EA, Castellano RK, Diederich F (2003) Interactions with aromatic rings in chemical and biological recognition. AngewChemInt Edit 42:1210-1250

Orabi EA, Lamoureux G (2012) Cation-π and π-π Interactions in aqueous solution studied using polarizable potential models. J Chem Theory Comput 8:182-193