Modern Molecular Methods to Study the Microbial Biome

Modern Molecular Methods to Study the Microbial Biome

Modern molecular methods to study the microbial biome

and metagenome of agrarian soils

M.V.Patyka1, A.Yu.Kolodiazhnyi1, Yu.P.Borko2

1National University of Life and Environmental Sciences of Ukraine, Kyiv, Ukraine

2National Scientific Center "Institute of Agriculture NAAS", Chabany, Kiev region, Ukraine

Received 08.05.2017 / Assess the species structure of mixed cultures and associations of microorganisms without separating them in pure culture in such complex environments, like water and soil made possible by the development of powerful molecular-biology techniques. Over the past decades was developed a series of approaches based on direct extraction and analysis of nucleic acids from samples of soil. So, aim of the work was characterization modern molecular-biological methods and approaches which application opens a new understanding of the phylogenetic and functional diversity of microbial communities of agrarian soils.Molecular approaches such as genetic fingerprinting, screening of clone libraries, DNA microarrays, metagenomics are extremely important for objective, complex evaluation of the qualitative composition and structure of soil microbial communities that are influenced by different farming practices. In manuscript have been briefly described latest advances in molecular microbial ecology with a focus on new methods and approaches to identify the real taxonomic diversity of component of soil microbial biome and new functional genes of microorganisms. This will help in understanding the biogeochemical processes of soil formation and uncovering the mechanisms of interaction in the system soil - microorganisms - plant.
Received in revised form24.05.2017
Accepted 15.11.2017
Available online05.12.2017
Microbial biome;
Molecular-biological methods
Citing: PatykaM.V., KolodjazhnyiA.Yu., BorkoYu.P. 2017. Modern molecular methods to study the microbial biome and metagenome of agrarian soils. Agrochemistry and Soil Science. Collected papers. No. 86. ISSAR. Kharkiv. P. 116-124. (Ukrainian).


1.PatykaN.V., KolodjazhnyiA.Yu., BorkoYu.P. 2016. Evaluation of metagenome and detection of the functionally significant polymorphisms of procaryotes of soil with using the method of pyrosequencing. "Microbial Biodiversity: current problems and solutions", Materials of Intern. scientific-practical. Conf. Astana. P. 96-101.

2.RastogiG. SaniR.K. 2011. Molecular Techniques to Assess Microbial Community Structure, Function, and Dynamics in the Environment. G. Rastogi. Microbes and Microbial Technology: Agricultural and Environmental Applications. Springer New York: 29-57.

3.KolodjazhnyiO.Yu., AndronovE.E., PatykaM.V. 2014. The molecular-biological evaluation of prokaryotic complex of typical chernozem at the winter wheat growing. Zbirnyk naukovyh prac' NNC «Instytut zemlerobstva NAAN». № 1-2. P. 61–67. (Ukr.)

4.PatykaM.V., KolodjazhnyiA.Yu., IbatullinІ.І.2016. Theevaluationofmetagenomeanddetectionoffunctionallysignificantpolymorphismsofprokaryotesofsoilbymethodofpyrosequencing. Mikrobiol. Z. 78(2):43-51. (Rus.)

5.ZhouJ., XiaB., HuangH. 2004.MicrobialDiversityandHeterogeneityinSandySubsurfaceSoils. Appliedandenvironmentalmicrobiology. 70 (3): 1723–1734.

6.PynevychA.V. 2006.Microbiology. Biologyofprokaryotes. S.-Peterb. Univ. T.1:356. (Rus.)

7.SharptonT.J.2014. Anintroductiontotheanalysisofshotgunmetagenomicdata. Front. PlantSci. 5:209.doi: 10.3389/fpls.2014.00209.

8.UrozS., BueeM., MuratC.etal. 2010.Pyrosequencingreveals a contrastedbacterialdiversitybetweenoakrhizosphereandsurroundingsoil. Environ.Microbiol. 2: 281–288.

9.PershynaE., TamazjanG., Dol'nyk A. et al. 2012. [Study ing the structur e of soil microbial community in saline soils by high-productive pyrosequencing]. Ecol. genetyka. 10 (2): 31 – 38.(Rus.)

10.GreenTringeS., RubinE.M. 2005. Metagenomics: DNA sequencingofenvironmentalsamples. Naturereviews: Genetics. 6: 805–814.

11.GadzaloYa.M., PatykaN.V., ZarishnyakA.S.2015. Agrobiology of plant rhizosphere: monograph. K.: Agrarna nauka. (Rus.)

12.AmannR.I., LudwigW., SchleiferK.H. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143–169.

13.CurtisT.P., SloanW.T., ScannellJ.W. 2002. Estimating prokaryotic diversity and its. Proc. Natl. Acad. Sci. USA. 99: 10494–10499.

14.HugenholtzP. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:Reviews0003.

15.GhebremedhinB., LayerF., KönigW., KönigB. 2008. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16 rRNA, hsp60, rpoB, sodA, and tufgene sequences. J. Clin. Microbiol. 46:1019–1025.

16.MuyzerG., WaalE.C.D., UitterlindenA.G. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59:695–700.

17.BusseH, DennerE.B.M, LubitzW.J. 1996. Classification and identification of bacteria: current approaches to an old problem. Overview of methods used in bacterial systematics. J. Biotechnol. 47: 3–38

18.ChabanjukJa.V. 2013. Molecular methods for studying the diversity of soil microorganisms. Agroekol. zhurnal. 3.:107–114. (Ukr.)

19.MühlingM., Woolven-AllenJ., MurrellJ.C., JointI. 2008. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2:379–392.

20.FranklinR.B. TaylorD.R., MillsA.L. 1999. Characterization of microbial communities using randomly amplified polymorphic DNA (RAPD). J. Microbiol. Methods. 35. P. 225–235.

21.YangY., YaoJ., HuS., QiY. 2000. Effects of agricultural chemicals on DNA sequence diversity of soil microbial community: a study with RAPD marker. Microb. Ecol. 39:72–79.

22.SmitE., LeeflangP., WernarsK. 1997. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis. FEMS Microbiol. Ecol. 23:249–261.

23.MichelJr., MarshT.L., ReddyC.A. 2002. Characterization of microbial community structure during composting using analysis of terminal restriction fragment length polymorphisms of 16S pPHK genes. Microbiol. Composting. Heidelberg: Springer: 25–42.

24.PatykaN.V., KruglovJu.V., TyhonovychY.A., PatykaV.F. The length polymorphism profile of restrictive fragments (tRFLP) of a complex of procaryotic microorganisms in podsolic soils. Dop. NAN Ukrai'ny. 1: 187–192. (Rus.)

25.PatykaM.V., TanchykS.P., KolodyazhnyiO.Yu. 2012. Formation of biodiversity and phylotypical structure of eubacterial chernozem complex at the winter wheat growing. Dop. NAN Ukrai'ny. 11: 163-171. (Ukr.)

26.GentryT.J., WickhamG.S., SchadtC.W., HeZ., ZhouJ. 2006. Microarray applications in microbial ecology research. Microb. Ecol. 52:159–175.

27.HeZ., GentryT.J., SchadtC.W. et. al. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1:67–77.

28.MetzkerM.L. 2010. Sequencing technologies – the next generation. Nat. Rev. Genet. 11:31–46.

29.PatykaN.V., KolodyazhnyiA.Yu., BublykN.A., PatykaT.I.2017. EvaluationofMetagenomesandDetectionofFunctionallySignificantPolymorphismsofSoilProkaryotesUsingthePyrosequencingMethod. J. ofNat.Sc. andSust. Tec. 11 (1)

УДК 576.26:577.2.08:579.64:631.46

Современные молекулярно-биологические методы изучения микробного биома и метагенома почв аграрного использования

Н.В.Патыка1, А.Ю.Колодяжный1*, Ю.П.Борко2

Национальный университет биоресурсов и природопользования Украины, Киев, Украина

Национальный научный центр «Институт земледелия НААН», Чабаны, Киевская обл., Украина


Благодаря мощному развитию молекулярно-биологических методов появилась возможность исследовать видовую структуру смешанных культур и ассоциаций микроорганизмов в таких сложных природных средах, как вода и почва, не выделяя их в чистую культуру. В последние десятилетия разработаны подходы, основанные на анализе нуклеиновых кислот после прямого экстрагирования их из образца почвы. Поэтому целью работы была характеристика современных молекулярно-биологических методов и подходов, применение которых открывает новое понимание относительного филогенетического и функционального разнообразия микробных ассоциаций в почвах аграрного использования. Такие молекулярные подходы как генетический фингерпринтинг, скрининг библиотек клоновых генов, ДНК-микрочипы и метагеномика особенно важны для объективной комплексной оценки состава и структуры микробных ассоциаций почвы, формирующихся под влиянием различных агроприемов. В статье коротко охарактеризованы достижения последних десятилетий в области молекулярной микробной экологии с акцентом на относительно новых методах и подходах, позволяющих выявлять реальное таксономическое разнообразие компонентов почвенного микробного биома и новые функциональные гены микроорганизмов с целью понимания биогеохимических процессов почвообразования и раскрытия механизмов взаимодействий в системе «почва – микроорганизмы – растение».

Ключевые слова: микроорганизмы; микробный биом; метагеном; ДНК; почва; биоразнообразие; молекулярно-биологические методы.