Joseph B. Lambert* and Zhongqiang Liu

Joseph B. Lambert* and Zhongqiang Liu

S1

Dinuclear Complexes and a One-dimensional Chain Involving Difunctional LigandsContaining the Acetylacetonate Functionality

Joseph B. Lambert* and Zhongqiang Liu

Department of Chemistry, Northwestern University, Evanston, Illinois60208

Electronic Supplementary Information

X-Ray structure s92q1m of crystals from 1,4-di-(3’acetylacetonato)benzene, tetramethylenediamine, and Cu(II) (6)

Experimental

Data Collection

A plate purple crystal of C56 H96 Cl4 Cu4 N8 O24 (two molecules of 6) having approximate dimensions of 0.452 x 0.442 x 0.088 mm was mounted using oil (Infineum V8512) on a glass fiber. All measurements were made on a CCD area detector with graphite monochromated MoK\α radiation.

Cell constants and an orientation matrix for data collection corresponded to a Monoclinic cell with dimensions:

a = 27.8046(17) Å

b = 9.7529(6) Å β = 90.3700(10)º

c = 13.2329(8) Å

V = 3588.4(4) Å3

For Z = 2 and F.W. = 1661.37, the calculated density is 1.538 g/cm3. Based on a

statistical analysis of intensity distribution, and the successful solution and

refinement of the structure, the space group was determined to be:

C2/c

The data were collected at a temperature of 153(2)K with a theta range for data

collection of 1.46 to 29.17º. Data were collected in 0.3º oscillations with 20

second exposures. The crystal-to-detector distance was 50.00 mm with the detector at the 28º swing position.

Data Reduction

Of the 21531 reflections which were collected, 4473 were unique (Rint =

0.0613). Data were collected using Bruker SMART detector and processed using SAINT-NT from Bruker.

The linear absorption coefficient, mu, for MoK\a radiation is 1.397 mm-1. An analytical absorption correction was applied, minimum and maximum transmission factors were: 0.5466 amd 0.8792, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods1 and expanded using Fourier techniques2. The non-hydrogen atoms were refined anisotropically.

Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement3 on F2 was based on 4473 reflections and 223 variable parameters and converged (largest parameter shift was 0.001 times its esd) with unweighted and weighted agreement factors of:

R1 = Σ| |Fo|-|Fc| |/Σ|Fo| = 0.0355

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2= 0.0909

The weighting scheme was calc.

calc w=1/[σ2(Fo2)+(0.0590P)2 + 0.0000P] where P=(Fo2+2Fc2)/

The standard deviation of an observation of unit weight4 was 1.033.

The weighting scheme was based on counting statistics and included a factor

to downweight the intense reflections. Plots of Σ w (|Fo| - |Fc|)2 versus |Fo|, reflection order in data collection, sin θ/λ and various classes

of indices showed no unusual trends. The maximum and minimum peaks on the

final difference Fourier map corresponded to 0.454 and -0.487 e-/Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber5.

Anomalous dispersion effects were included in Fcalc6; the values for Df' and

Df" were those of Creagh and McAuley7. The values for the mass attenuation

coefficients are those of Creagh and Hubbell8. All calculations were performed

using the Bruker SHELXTL9 crystallographic software package.

References

(1) SHELXS-97 (Sheldrick, 1990)

(2) SHELXL-97 (Sheldrick, 1997)

(3) Full-Matrix Least-Squares refinement on F2:

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2

(4) GooF = S = {w(Fo2-Fc2)2]/(n-p)}1/2 n = number of reflections; p = total number of reflections refined

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallograph

Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J .; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8,

pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3,

pages 200-206 (1992).

(9) Shelxtl for WindowsNT: Crystal Structure Analysis Package, Bruker (1997).

Table 1. Crystal data and structure refinement for s92q1m.

Identification code s92q

Empirical formula C56 H96 Cl4 Cu4 N8 O24

Formula weight 1661.37

Temperature 153(2) K

Wavelength 0.71073 Å

Crystal system, space group Monoclinic, C2/c

Unit cell dimensions a = 27.8046(17) Å

b = 9.7529(6) Å β = 90.3700(10) º

c = 13.2329(8) Å

Volume 3588.4(4) Å3

Z, Calculated density 2, 1.538 Mg/m3

Absorption coefficient 1.397 mm-1

F(000) 1728

Crystal size 0.452 x 0.442 x 0.088 mm

Theta range for data collection 1.46 to 29.17 º

Limiting indices -37<=h<=37, -12<=k<=13, -18<=l<=18

Reflections collected / unique 21531 / 4473 [R(int) = 0.0613]

Completeness to theta = 29.17 92.1 %

Absorption correction Integration

Max. and min. transmission 0.8792 and 0.5466

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 4473 / 0 / 223

Goodness-of-fit on F^2 1.033

Final R indices [I>2sigma(I)] R1 = 0.0355, wR2 = 0.0909

R indices (all data) R1 = 0.0446, wR2 = 0.0939

Largest diff. peak and hole 0.454 and -0.487 e-/Å-3

Table 2. Atomic coordinates and equivalent isotropic

displacement parameters (A^2 x 10^3) for s92q1m.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

______

x y z U(eq)

______

Cu(1) 0.366657(8) 0.01912(2) 0.889472(16) 17(1)

Cl(1)0.354614(18) 0.30060(5) 0.70627(4) 26(1)

O(1) 0.35806(5) 0.17988(13) 0.96697(10) 20(1)

O(2) 0.43507(5) 0.03820(13) 0.88903(10) 21(1)

O(3) 0.36041(6) 0.15730(16) 0.73202(12) 40(1)

O(4) 0.40010(6) 0.3672(2) 0.70988(15) 58(1)

O(5) 0.33494(6) 0.30924(16) 0.60585(11) 33(1)

O(6) 0.32191(7) 0.36386(18) 0.77525(12) 49(1)

N(1) 0.29558(6) -0.02827(16) 0.90767(13) 21(1)

N(2) 0.37226(6) -0.15890(16) 0.81188(12) 20(1)

C(1) 0.45888(7) 0.14517(19) 0.91508(14) 19(1)

C(2) 0.43864(6) 0.26497(19) 0.95753(14) 18(1)

C(3) 0.38922(6) 0.27574(19) 0.97865(14) 18(1)

C(4) 0.51190(7) 0.1364(2) 0.89654(16) 28(1)

C(5) 0.36833(7) 0.4067(2) 1.01789(15) 24(1)

C(6) 0.47052(6) 0.38542(18) 0.97948(14) 18(1)

C(7) 0.48352(7) 0.4752(2) 0.90264(15) 22(1)

C(8) 0.51252(7) 0.5886(2) 0.92355(14) 22(1)

C(9) 0.29033(7) -0.1743(2) 0.87715(16) 28(1)

C(10) 0.32230(7) -0.2030(2) 0.78799(16) 28(1)

C(11) 0.26551(7) 0.0615(2) 0.84331(17) 30(1)

C(12) 0.27946(8) -0.0116(2) 1.01339(17) 30(1)

C(13) 0.40057(8) -0.1460(2) 0.71768(15) 31(1)

C(14) 0.39642(8) -0.2611(2) 0.87781(16) 28(1)

______

Table 3. Bond lengths [A] and angles [deg] for s92q1m.

______

Cu(1)-O(1) 1.8896(13)

Cu(1)-O(2) 1.9114(13)

Cu(1)-N(2) 2.0236(16)

Cu(1)-N(1) 2.0453(16)

Cl(1)-O(4) 1.4223(18)

Cl(1)-O(6) 1.4323(17)

Cl(1)-O(5) 1.4362(15)

Cl(1)-O(3) 1.4472(16)

O(1)-C(3) 1.283(2)

O(2)-C(1) 1.282(2)

N(1)-C(11) 1.477(3)

N(1)-C(12) 1.481(3)

N(1)-C(9) 1.488(2)

N(2)-C(14) 1.483(2)

N(2)-C(13) 1.484(2)

N(2)-C(10) 1.486(2)

C(1)-C(2) 1.415(3)

C(1)-C(4) 1.498(3)

C(2)-C(3) 1.408(3)

C(2)-C(6) 1.499(2)

C(3)-C(5) 1.498(3)

C(4)-H(4A) 0.9800

C(4)-H(4B) 0.9800

C(4)-H(4C) 0.9800

C(5)-H(5A) 0.9800

C(5)-H(5B) 0.9800

C(5)-H(5C) 0.9800

C(6)-C(8)#1 1.388(3)

C(6)-C(7) 1.391(3)

C(7)-C(8) 1.395(3)

C(7)-H(7) 0.9500

C(8)-C(6)#1 1.388(3)

C(8)-H(8) 0.9500

C(9)-C(10) 1.508(3)

C(9)-H(9A) 0.9900

C(9)-H(9B) 0.9900

C(10)-H(10A) 0.9900

C(10)-H(10B) 0.9900

C(11)-H(11A) 0.9800

C(11)-H(11B) 0.9800

C(11)-H(11C) 0.9800

C(12)-H(12A) 0.9800

C(12)-H(12B) 0.9800

C(12)-H(12C) 0.9800

C(13)-H(13A) 0.9800

C(13)-H(13B) 0.9800

C(13)-H(13C) 0.9800

C(14)-H(14A) 0.9800

C(14)-H(14B) 0.9800

C(14)-H(14C) 0.9800

O(1)-Cu(1)-O(2) 92.88(6)

O(1)-Cu(1)-N(2) 176.15(6)

O(2)-Cu(1)-N(2) 90.12(6)

O(1)-Cu(1)-N(1) 89.88(6)

O(2)-Cu(1)-N(1) 169.98(6)

N(2)-Cu(1)-N(1) 86.76(7)

O(4)-Cl(1)-O(6) 110.49(13)

O(4)-Cl(1)-O(5) 109.72(10)

O(6)-Cl(1)-O(5) 108.96(10)

O(4)-Cl(1)-O(3) 109.60(11)

O(6)-Cl(1)-O(3) 109.64(10)

O(5)-Cl(1)-O(3) 108.40(10)

C(3)-O(1)-Cu(1) 125.61(12)

C(1)-O(2)-Cu(1) 126.21(12)

C(11)-N(1)-C(12) 107.81(16)

C(11)-N(1)-C(9) 110.90(16)

C(12)-N(1)-C(9) 109.40(16)

C(11)-N(1)-Cu(1) 110.00(12)

C(12)-N(1)-Cu(1) 112.64(13)

C(9)-N(1)-Cu(1) 106.12(12)

C(14)-N(2)-C(13) 108.09(16)

C(14)-N(2)-C(10) 110.50(16)

C(13)-N(2)-C(10) 110.24(16)

C(14)-N(2)-Cu(1) 108.30(12)

C(13)-N(2)-Cu(1) 113.36(12)

C(10)-N(2)-Cu(1) 106.33(12)

O(2)-C(1)-C(2) 124.96(17)

O(2)-C(1)-C(4) 114.62(17)

C(2)-C(1)-C(4) 120.42(17)

C(3)-C(2)-C(1) 122.12(16)

C(3)-C(2)-C(6) 118.67(16)

C(1)-C(2)-C(6) 119.21(16)

O(1)-C(3)-C(2) 125.51(17)

O(1)-C(3)-C(5) 113.59(16)

C(2)-C(3)-C(5) 120.91(16)

C(1)-C(4)-H(4A) 109.5

C(1)-C(4)-H(4B) 109.5

H(4A)-C(4)-H(4B) 109.5

C(1)-C(4)-H(4C) 109.5

H(4A)-C(4)-H(4C) 109.5

H(4B)-C(4)-H(4C) 109.5

C(3)-C(5)-H(5A) 109.5

C(3)-C(5)-H(5B) 109.5

H(5A)-C(5)-H(5B) 109.5

C(3)-C(5)-H(5C) 109.5

H(5A)-C(5)-H(5C) 109.5

H(5B)-C(5)-H(5C) 109.5

C(8)#1-C(6)-C(7) 118.18(17)

C(8)#1-C(6)-C(2) 121.30(17)

C(7)-C(6)-C(2) 120.51(16)

C(6)-C(7)-C(8) 120.42(17)

C(6)-C(7)-H(7) 119.8

C(8)-C(7)-H(7) 119.8

C(6)#1-C(8)-C(7) 121.39(18)

C(6)#1-C(8)-H(8) 119.3

C(7)-C(8)-H(8) 119.3

N(1)-C(9)-C(10) 109.42(16)

N(1)-C(9)-H(9A) 109.8

C(10)-C(9)-H(9A) 109.8

N(1)-C(9)-H(9B) 109.8

C(10)-C(9)-H(9B) 109.8

H(9A)-C(9)-H(9B) 108.2

N(2)-C(10)-C(9) 109.56(16)

N(2)-C(10)-H(10A) 109.8

C(9)-C(10)-H(10A) 109.8

N(2)-C(10)-H(10B) 109.8

C(9)-C(10)-H(10B) 109.8

H(10A)-C(10)-H(10B) 108.2

N(1)-C(11)-H(11A) 109.5

N(1)-C(11)-H(11B) 109.5

H(11A)-C(11)-H(11B) 109.5

N(1)-C(11)-H(11C) 109.5

H(11A)-C(11)-H(11C) 109.5

H(11B)-C(11)-H(11C) 109.5

N(1)-C(12)-H(12A) 109.5

N(1)-C(12)-H(12B) 109.5

H(12A)-C(12)-H(12B) 109.5

N(1)-C(12)-H(12C) 109.5

H(12A)-C(12)-H(12C) 109.5

H(12B)-C(12)-H(12C) 109.5

N(2)-C(13)-H(13A) 109.5

N(2)-C(13)-H(13B) 109.5

H(13A)-C(13)-H(13B) 109.5

N(2)-C(13)-H(13C) 109.5

H(13A)-C(13)-H(13C) 109.5

H(13B)-C(13)-H(13C) 109.5

N(2)-C(14)-H(14A) 109.5

N(2)-C(14)-H(14B) 109.5

H(14A)-C(14)-H(14B) 109.5

N(2)-C(14)-H(14C) 109.5

H(14A)-C(14)-H(14C) 109.5

H(14B)-C(14)-H(14C) 109.5

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+2

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s92q1m.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Cu(1) 15(1) 15(1) 22(1) -2(1) -1(1) -2(1)

Cl(1) 28(1) 26(1) 25(1) 7(1) -5(1) 0(1)

O(1) 18(1) 18(1) 26(1) -3(1) 2(1) -3(1)

O(2) 15(1) 17(1) 32(1) -5(1) -2(1) -1(1)

O(3) 55(1) 29(1) 35(1) 11(1) 6(1) 12(1)

O(4) 39(1) 66(1) 70(1) 17(1) -25(1) -21(1)

O(5) 38(1) 37(1) 25(1) 6(1) -8(1) -5(1)

O(6) 72(1) 39(1) 35(1) 3(1) 9(1) 24(1)

N(1) 15(1) 19(1) 29(1) 2(1) -1(1) -3(1)

N(2) 21(1) 19(1) 21(1) -1(1) -2(1) -3(1)

C(1) 18(1) 18(1) 22(1) -1(1) -4(1) -2(1)

C(2) 15(1) 16(1) 21(1) -2(1) -2(1) -3(1)

C(3) 18(1) 17(1) 18(1) 1(1) -1(1) -1(1)

C(4) 18(1) 26(1) 39(1) -8(1) 1(1) -1(1)

C(5) 22(1) 19(1) 33(1) -4(1) 3(1) 0(1)

C(6) 14(1) 15(1) 25(1) -3(1) 0(1) -1(1)

C(7) 22(1) 24(1) 20(1) -3(1) -3(1) -6(1)

C(8) 23(1) 22(1) 22(1) 2(1) 1(1) -5(1)

C(9) 22(1) 21(1) 41(1) -1(1) -4(1) -7(1)

C(10) 25(1) 24(1) 34(1) -7(1) -9(1) -6(1)

C(11) 19(1) 30(1) 42(1) 7(1) -6(1) 0(1)

C(12) 26(1) 30(1) 35(1) 4(1) 9(1) -3(1)

C(13) 37(1) 29(1) 26(1) -6(1) 6(1) -2(1)

C(14) 33(1) 21(1) 32(1) 2(1) -4(1) 3(1)

______

Table 5. Hydrogen coordinates ( x 10^4) and isotropic

displacement parameters (A^2 x 10^3) for s92q1m.

______

x y z U(eq)

______

H(4A) 5294 1594 9588 42

H(4B) 5207 2011 8431 42

H(4C) 5202 431 8756 42

H(5A) 3558 4611 9613 37

H(5B) 3934 4589 10534 37

H(5C) 3421 3859 10647 37

H(7) 4726 4592 8355 26

H(8) 5208 6492 8703 26

H(9A) 2564 -1934 8588 33

H(9B) 2994 -2348 9343 33

H(10A) 3218 -3022 7723 34

H(10B) 3103 -1527 7280 34

H(11A) 2738 473 7722 45

H(11B) 2712 1575 8616 45

H(11C) 2315 392 8534 45

H(12A) 2460 -423 10192 45

H(12B) 2817 852 10327 45

H(12C) 3000 -665 10582 45

H(13A) 4020 -2352 6837 46

H(13B) 4332 -1154 7343 46

H(13C) 3852 -789 6728 46

H(14A) 3789 -2688 9416 43

H(14B) 4295 -2316 8915 43

H(14C) 3968 -3504 8439 43

______

Table 6. Torsion angles [deg] for s92q1m.

______

O(2)-Cu(1)-O(1)-C(3) 18.29(15)

N(2)-Cu(1)-O(1)-C(3) 159.5(9)

N(1)-Cu(1)-O(1)-C(3) -171.34(15)

O(1)-Cu(1)-O(2)-C(1) -13.29(16)

N(2)-Cu(1)-O(2)-C(1) 169.12(16)

N(1)-Cu(1)-O(2)-C(1) -119.1(3)

O(1)-Cu(1)-N(1)-C(11) 74.49(13)

O(2)-Cu(1)-N(1)-C(11) -179.4(3)

N(2)-Cu(1)-N(1)-C(11) -107.39(14)

O(1)-Cu(1)-N(1)-C(12) -45.81(13)

O(2)-Cu(1)-N(1)-C(12) 60.3(4)

N(2)-Cu(1)-N(1)-C(12) 132.31(14)

O(1)-Cu(1)-N(1)-C(9) -165.48(13)

O(2)-Cu(1)-N(1)-C(9) -59.4(4)

N(2)-Cu(1)-N(1)-C(9) 12.64(13)

O(1)-Cu(1)-N(2)-C(14) -74.9(9)

O(2)-Cu(1)-N(2)-C(14) 66.36(12)

N(1)-Cu(1)-N(2)-C(14) -104.12(13)

O(1)-Cu(1)-N(2)-C(13) 165.2(9)

O(2)-Cu(1)-N(2)-C(13) -53.58(14)

N(1)-Cu(1)-N(2)-C(13) 135.94(14)

O(1)-Cu(1)-N(2)-C(10) 43.9(10)

O(2)-Cu(1)-N(2)-C(10) -174.87(12)

N(1)-Cu(1)-N(2)-C(10) 14.66(12)

Cu(1)-O(2)-C(1)-C(2) 5.9(3)

Cu(1)-O(2)-C(1)-C(4) -173.67(13)

O(2)-C(1)-C(2)-C(3) 2.2(3)

C(4)-C(1)-C(2)-C(3) -178.23(17)

O(2)-C(1)-C(2)-C(6) -176.84(17)

C(4)-C(1)-C(2)-C(6) 2.7(3)

Cu(1)-O(1)-C(3)-C(2) -16.4(3)

Cu(1)-O(1)-C(3)-C(5) 163.31(12)

C(1)-C(2)-C(3)-O(1) 3.4(3)

C(6)-C(2)-C(3)-O(1) -177.55(17)

C(1)-C(2)-C(3)-C(5) -176.36(17)

C(6)-C(2)-C(3)-C(5) 2.7(3)

C(3)-C(2)-C(6)-C(8)#1 80.8(2)

C(1)-C(2)-C(6)-C(8)#1 -100.1(2)

C(3)-C(2)-C(6)-C(7) -98.6(2)

C(1)-C(2)-C(6)-C(7) 80.5(2)

C(8)#1-C(6)-C(7)-C(8) -0.5(3)

C(2)-C(6)-C(7)-C(8) 178.90(18)

C(6)-C(7)-C(8)-C(6)#1 0.5(3)

C(11)-N(1)-C(9)-C(10) 81.8(2)

C(12)-N(1)-C(9)-C(10) -159.41(17)

Cu(1)-N(1)-C(9)-C(10) -37.64(18)

C(14)-N(2)-C(10)-C(9) 77.8(2)

C(13)-N(2)-C(10)-C(9) -162.75(17)

Cu(1)-N(2)-C(10)-C(9) -39.49(18)

N(1)-C(9)-C(10)-N(2) 52.9(2)

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+2

X-Ray structure s51q1m of crystals from 1,4-di-(3’acetylacetonato)benzene, 2,2’-dipyridyl, and Cu(II) (7)

Experimental

Data Collection

A blue plate crystal of C23 H28 Cl Cu N2 O8 S (corresponding to half of 7 plus a molecule of acetone from the recrystallizing solvent)(having approximate dimensions of 0.322 x 0.214 x 0.082 mm was mounted using oil (Infineum V8512) on a glass fiber. This formula corresponds to half a molecular unit. Doubling these atomic constituents corresponds to one molecule of 7, two molecules of the solvent acetone, and two perchlorate ions for charge neutrality. The acetone molecules and the perchlorate ions are not covalently bound to 7 and hence are not displayed in the figures in the text. All measurements were made on a CCD area detector with graphite monochromated MoK\a radiation.

Cell constants and an orientation matrix for data collection corresponded to a Triclinic cell with dimensions:

a = 11.0425(9) Å α = 104.8720(10)º

b = 11.3196(10) Å β = 101.6620(10)º

c = 12.0961(10) Å γ = 108.1070(10)º

V = 1321.94(19) Å3

For Z = 2 and F.W. = 591.52, the calculated density is 1.486 g/cm3. Based on a

statistical analysis of intensity distribution, and the successful solution and

refinement of the structure, the space group was determined to be:

P-1

The data were collected at a temperature of 293(2)K with a theta range for data

collection of 1.83 to 29.28º. Data were collected in 0.3º oscillations with 25

second exposures. The crystal-to-detector distance was 50.00 mm with the detector at the 28º swing position.

Data Reduction

Of the 11965 reflections which were collected, 6254 were unique (Rint =

0.0657). Data were collected using Bruker SMART detector and processed using SAINT-NT from Bruker.

The linear absorption coefficient, mu, for MoK\a radiation is 1.055 mm-1. a Face indexed absorption correction was applied. Minimum and maximum transmission factors were: 0.7400 and 0.9221, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods1 and expanded using Fourier techniques2. The non-hydrogen atoms were refined anisotropically.

Hydrogen atoms were included but not refined. The final cycle of full-matrix least-squares refinement3 on F2 was based on 6254 reflections and 331 variable parameters and converged (largest parameter shift was 0.000 times its esd) with unweighted and weighted agreement factors of:

R1 = Σ| |Fo|-|Fc| |/Σ|Fo| = 0.0762

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2= 0.2119

The weighting scheme was calc.

calc w=1/[σ2(Fo2)+(0.1606P)2 + 0.0000P] where P=(Fo2+2Fc2)/3

The standard deviation of an observation of unit weight4 was 1.094.

The weighting scheme was based on counting statistics and included a factor

to downweight the intense reflectionsPlots of Σ w (|Fo| - |Fc|)2 versus |Fo|, reflection order in data collection, sin θ/λ and various classes

of indices showed no unusual trends. The maximum and minimum peaks on the

final difference Fourier map corresponded to 1.331 and -1.360 e-/Å3, respectively and were located in the vicinity of the copper position.

Neutral atom scattering factors were taken from Cromer and Waber5.

Anomalous dispersion effects were included in Fcalc6; the values for Df' and

Df" were those of Creagh and McAuley7. The values for the mass attenuation

coefficients are those of Creagh and Hubbell8. All calculations were performed

using the Bruker SHELXTL9 crystallographic software package.

References

(1) SHELXS-97 (Sheldrick, 1990)

(2) SHELXL-97 (Sheldrick, 1997)

(3) Full-Matrix Least-Squares refinement on F2:

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2

(4) GooF = S = {w(Fo2-Fc2)2]/(n-p)}1/2 n = number of reflections; p = total number of reflections refined

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallograph

Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J .; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8,

pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3,

pages 200-206 (1992).

(9) Shelxtl for WindowsNT: Crystal Structure Analysis Package, Bruker (1997).

Table 1. Crystal data and structure refinement for s51q1m.

Identification code s51q1m

Empirical formula C23 H28 Cl Cu N2 O8 S

Formula weight 591.52

Temperature 293(2) K

Wavelength 0.71073 Å

Crystal system, space group Triclinic, P-1

Unit cell dimensions a = 11.0425(9) Å α = 104.8720(10) º

b = 11.3196(10) Å β = 101.6620(10) º

c = 12.0961(10) Å γ = 108.1070(10) º

Volume 1321.94(19) Å3

Z, Calculated density 2, 1.486 Mg/m3

Absorption coefficient 1.055 mm-1

F(000) 612

Crystal size 0.322 x 0.214 x 0.082 mm

Theta range for data collection 1.83 to 29.28 º

Limiting indices -14<=h<=14, -15<=k<=14, -16<=l<=15

Reflections collected / unique 11965 / 6254 [R(int) = 0.0657]

Completeness to theta = 29.28 86.6 %

Absorption correction Integration

Max. and min. transmission 0.9221 and 0.7400

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 6254 / 0 / 331

Goodness-of-fit on F^2 1.094

Final R indices [I>2sigma(I)] R1 = 0.0762, wR2 = 0.2119

R indices (all data) R1 = 0.1124, wR2 = 0.2733

Largest diff. peak and hole 1.331 and -1.360 e-/Å-3

Table 2. Atomic coordinates and equivalent isotropic

displacement parameters (A^2 x 10^3) for s51q1m.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

______

x y z U(eq)

______

Cu(1) 0.37402(6) 0.07569(6) 0.51078(5) 20(1)

S(1) 0.11807(15) 0.16238(15) 0.42709(15) 32(1)

Cl(1) 0.18773(14) 0.65455(13) 0.76587(12) 28(1)

O(1) 0.4595(4) 0.2652(3) 0.5672(3) 25(1)

O(2) 0.3896(4) 0.0713(3) 0.6688(3) 23(1)

O(3) 0.1628(4) 0.0630(4) 0.4683(4) 34(1)

O(4) 0.9453(14) 0.8549(9) 1.0893(9) 166(5)

O(5) 0.1463(5) 0.5858(6) 0.8446(5) 61(2)

O(6) 0.2746(5) 0.6052(5) 0.7124(4) 44(1)

O(7) 0.0713(4) 0.6367(5) 0.6735(4) 40(1)

O(8) 0.2593(6) 0.7924(5) 0.8327(6) 69(2)

N(1) 0.3771(4) 0.0568(4) 0.3435(4) 20(1)

N(2) 0.3049(4) -0.1227(4) 0.4419(4) 23(1)

C(1) 0.4242(6) 0.1568(5) 0.3029(5) 28(1)

C(2) 0.4149(6) 0.1367(6) 0.1839(5) 34(1)

C(3) 0.3516(7) 0.0078(6) 0.1026(6) 38(2)

C(4) 0.3032(6) -0.0963(6) 0.1430(5) 31(1)

C(5) 0.3195(5) -0.0683(5) 0.2650(5) 22(1)

C(6) 0.2755(5) -0.1711(5) 0.3210(5) 23(1)

C(7) 0.2121(6) -0.3056(6) 0.2555(5) 26(1)

C(8) 0.1760(6) -0.3928(6) 0.3182(6) 32(1)

C(9) 0.2067(6) -0.3422(6) 0.4422(5) 29(1)

C(10) 0.2712(5) -0.2067(5) 0.5014(5) 24(1)

C(11) 0.4804(5) 0.3415(5) 0.6731(5) 21(1)

C(12) 0.4545(5) 0.3018(5) 0.7707(5) 22(1)

C(13) 0.4112(5) 0.1678(5) 0.7628(4) 22(1)

C(14) 0.5317(6) 0.4863(5) 0.6877(5) 31(1)

C(15) 0.3869(7) 0.1307(6) 0.8696(5) 36(2)

C(16) 0.4784(5) 0.4047(5) 0.8888(5) 23(1)

C(17) 0.3892(5) 0.4675(5) 0.9033(5) 26(1)

C(18) 0.5889(5) 0.4380(5) 0.9870(5) 25(1)

C(19) -0.0512(6) 0.0715(6) 0.3384(5) 33(1)

C(20) 0.0905(7) 0.2592(7) 0.5530(7) 52(2)

C(21) 0.9186(10) 0.7787(7) 1.0058(6) 54(2)

C(22) 0.9196(8) 0.6392(8) 0.9990(7) 52(2)

C(23) 0.9267(9) 0.8033(8) 0.8860(8) 64(2)

______

Table 3. Bond lengths [A] and angles [deg] for s51q1m.

______

Cu(1)-O(2) 1.900(4)

Cu(1)-O(1) 1.921(4)

Cu(1)-N(1) 1.988(4)

Cu(1)-N(2) 2.009(4)

Cu(1)-O(3) 2.234(4)

S(1)-O(3) 1.514(4)

S(1)-C(19) 1.769(6)

S(1)-C(20) 1.775(7)

Cl(1)-O(8) 1.429(5)

Cl(1)-O(6) 1.431(5)

Cl(1)-O(5) 1.435(5)

Cl(1)-O(7) 1.444(4)

O(1)-C(11) 1.276(6)

O(2)-C(13) 1.278(6)

O(4)-C(21) 1.061(10)

N(1)-C(5) 1.348(7)

N(1)-C(1) 1.349(7)

N(2)-C(10) 1.342(7)

N(2)-C(6) 1.352(7)

C(1)-C(2) 1.374(8)

C(1)-H(1) 0.9300

C(2)-C(3) 1.391(8)

C(2)-H(2) 0.9300

C(3)-C(4) 1.386(8)

C(3)-H(3) 0.9300

C(4)-C(5) 1.389(7)

C(4)-H(4) 0.9300

C(5)-C(6) 1.494(7)

C(6)-C(7) 1.390(8)

C(7)-C(8) 1.403(8)

C(7)-H(7) 0.9300

C(8)-C(9) 1.388(8)

C(8)-H(8) 0.9300

C(9)-C(10) 1.386(7)

C(9)-H(9) 0.9300

C(10)-H(10) 0.9300

C(11)-C(12) 1.416(7)

C(11)-C(14) 1.508(7)

C(12)-C(13) 1.413(7)

C(12)-C(16) 1.506(7)

C(13)-C(15) 1.505(7)

C(14)-H(14A) 0.9600

C(14)-H(14B) 0.9600

C(14)-H(14C) 0.9600

C(15)-H(15A) 0.9600

C(15)-H(15B) 0.9600

C(15)-H(15C) 0.9600

C(16)-C(18) 1.392(7)

C(16)-C(17) 1.396(8)

C(17)-C(18)#1 1.395(8)

C(17)-H(17) 0.9300

C(18)-C(17)#1 1.395(8)

C(18)-H(18) 0.9300

C(19)-H(19A) 0.9600

C(19)-H(19B) 0.9600

C(19)-H(19C) 0.9600

C(20)-H(20A) 0.9600

C(20)-H(20B) 0.9600

C(20)-H(20C) 0.9600

C(21)-C(23) 1.559(10)

C(21)-C(22) 1.564(10)

C(22)-H(22A) 0.9600

C(22)-H(22B) 0.9600

C(22)-H(22C) 0.9600

C(23)-H(23A) 0.9600

C(23)-H(23B) 0.9600

C(23)-H(23C) 0.9600

O(2)-Cu(1)-O(1) 92.71(15)

O(2)-Cu(1)-N(1) 168.77(17)

O(1)-Cu(1)-N(1) 93.53(17)

O(2)-Cu(1)-N(2) 91.34(17)

O(1)-Cu(1)-N(2) 172.17(18)

N(1)-Cu(1)-N(2) 81.42(18)

O(2)-Cu(1)-O(3) 95.69(16)

O(1)-Cu(1)-O(3) 97.17(16)

N(1)-Cu(1)-O(3) 92.78(17)

N(2)-Cu(1)-O(3) 89.08(17)

O(3)-S(1)-C(19) 104.7(3)

O(3)-S(1)-C(20) 105.6(3)

C(19)-S(1)-C(20) 98.0(3)

O(8)-Cl(1)-O(6) 108.3(3)

O(8)-Cl(1)-O(5) 109.7(4)

O(6)-Cl(1)-O(5) 110.1(3)

O(8)-Cl(1)-O(7) 109.3(3)

O(6)-Cl(1)-O(7) 109.9(3)

O(5)-Cl(1)-O(7) 109.5(3)

C(11)-O(1)-Cu(1) 124.9(3)

C(13)-O(2)-Cu(1) 126.8(3)

S(1)-O(3)-Cu(1) 123.8(2)

C(5)-N(1)-C(1) 119.0(5)

C(5)-N(1)-Cu(1) 115.0(3)

C(1)-N(1)-Cu(1) 125.8(4)

C(10)-N(2)-C(6) 119.3(5)

C(10)-N(2)-Cu(1) 126.3(4)

C(6)-N(2)-Cu(1) 113.9(4)

N(1)-C(1)-C(2) 122.6(5)

N(1)-C(1)-H(1) 118.7

C(2)-C(1)-H(1) 118.7

C(1)-C(2)-C(3) 118.2(5)

C(1)-C(2)-H(2) 120.9

C(3)-C(2)-H(2) 120.9

C(4)-C(3)-C(2) 119.9(6)

C(4)-C(3)-H(3) 120.0

C(2)-C(3)-H(3) 120.0

C(3)-C(4)-C(5) 118.5(5)

C(3)-C(4)-H(4) 120.7

C(5)-C(4)-H(4) 120.7

N(1)-C(5)-C(4) 121.7(5)

N(1)-C(5)-C(6) 114.2(5)

C(4)-C(5)-C(6) 124.1(5)

N(2)-C(6)-C(7) 122.4(5)

N(2)-C(6)-C(5) 114.4(5)

C(7)-C(6)-C(5) 123.2(5)

C(6)-C(7)-C(8) 118.0(5)

C(6)-C(7)-H(7) 121.0

C(8)-C(7)-H(7) 121.0

C(9)-C(8)-C(7) 119.2(5)

C(9)-C(8)-H(8) 120.4

C(7)-C(8)-H(8) 120.4

C(10)-C(9)-C(8) 119.5(5)

C(10)-C(9)-H(9) 120.3

C(8)-C(9)-H(9) 120.3

N(2)-C(10)-C(9) 121.7(5)

N(2)-C(10)-H(10) 119.2

C(9)-C(10)-H(10) 119.2

O(1)-C(11)-C(12) 126.4(5)

O(1)-C(11)-C(14) 113.6(5)

C(12)-C(11)-C(14) 120.0(5)

C(13)-C(12)-C(11) 122.0(5)

C(13)-C(12)-C(16) 118.1(5)

C(11)-C(12)-C(16) 119.8(5)

O(2)-C(13)-C(12) 124.4(5)

O(2)-C(13)-C(15) 115.5(5)

C(12)-C(13)-C(15) 120.1(5)

C(11)-C(14)-H(14A) 109.5

C(11)-C(14)-H(14B) 109.5

H(14A)-C(14)-H(14B) 109.5

C(11)-C(14)-H(14C) 109.5

H(14A)-C(14)-H(14C) 109.5

H(14B)-C(14)-H(14C) 109.5

C(13)-C(15)-H(15A) 109.5

C(13)-C(15)-H(15B) 109.5

H(15A)-C(15)-H(15B) 109.5

C(13)-C(15)-H(15C) 109.5

H(15A)-C(15)-H(15C) 109.5

H(15B)-C(15)-H(15C) 109.5

C(18)-C(16)-C(17) 118.3(5)

C(18)-C(16)-C(12) 120.9(5)

C(17)-C(16)-C(12) 120.8(5)

C(18)#1-C(17)-C(16) 120.7(5)

C(18)#1-C(17)-H(17) 119.6

C(16)-C(17)-H(17) 119.6

C(16)-C(18)-C(17)#1 121.0(5)

C(16)-C(18)-H(18) 119.5

C(17)#1-C(18)-H(18) 119.5

S(1)-C(19)-H(19A) 109.5

S(1)-C(19)-H(19B) 109.5

H(19A)-C(19)-H(19B) 109.5

S(1)-C(19)-H(19C) 109.5

H(19A)-C(19)-H(19C) 109.5

H(19B)-C(19)-H(19C) 109.5

S(1)-C(20)-H(20A) 109.5

S(1)-C(20)-H(20B) 109.5

H(20A)-C(20)-H(20B) 109.5

S(1)-C(20)-H(20C) 109.5

H(20A)-C(20)-H(20C) 109.5

H(20B)-C(20)-H(20C) 109.5

O(4)-C(21)-C(23) 124.2(8)

O(4)-C(21)-C(22) 121.7(9)

C(23)-C(21)-C(22) 110.5(6)

C(21)-C(22)-H(22A) 109.5

C(21)-C(22)-H(22B) 109.5

H(22A)-C(22)-H(22B) 109.5

C(21)-C(22)-H(22C) 109.5

H(22A)-C(22)-H(22C) 109.5

H(22B)-C(22)-H(22C) 109.5

C(21)-C(23)-H(23A) 109.5

C(21)-C(23)-H(23B) 109.5

H(23A)-C(23)-H(23B) 109.5

C(21)-C(23)-H(23C) 109.5

H(23A)-C(23)-H(23C) 109.5

H(23B)-C(23)-H(23C) 109.5

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+2

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s51q1m.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Cu(1) 26(1) 17(1) 15(1) 3(1) 6(1) 8(1)

S(1) 30(1) 32(1) 41(1) 19(1) 11(1) 15(1)

Cl(1) 31(1) 27(1) 27(1) 10(1) 9(1) 11(1)

O(1) 30(2) 18(2) 18(2) 3(2) 7(2) 2(2)

O(2) 34(2) 15(2) 12(2) 4(1) 0(2) 6(2)

O(3) 26(2) 38(2) 49(3) 27(2) 16(2) 13(2)

O(4) 342(17) 76(6) 125(8) 52(6) 143(10) 80(8)

O(5) 47(3) 106(5) 72(4) 72(4) 34(3) 42(3)

O(6) 55(3) 49(3) 43(3) 15(2) 24(2) 32(2)

O(7) 35(2) 50(3) 40(3) 24(2) 8(2) 19(2)

O(8) 72(4) 32(3) 71(4) -12(3) 4(3) 14(3)

N(1) 23(2) 18(2) 13(2) 4(2) 1(2) 4(2)

N(2) 23(2) 18(2) 11(2) -4(2) -4(2) 1(2)

C(1) 39(3) 21(3) 22(3) 7(2) 10(2) 9(2)

C(2) 50(4) 25(3) 25(3) 12(2) 14(3) 6(3)

C(3) 58(4) 35(3) 22(3) 13(3) 20(3) 12(3)

C(4) 43(3) 23(3) 19(3) 3(2) 10(2) 8(2)

C(5) 26(3) 23(3) 21(3) 10(2) 8(2) 12(2)

C(6) 23(3) 25(3) 26(3) 11(2) 10(2) 13(2)

C(7) 34(3) 28(3) 14(2) -1(2) 6(2) 14(2)

C(8) 37(3) 21(3) 30(3) 3(2) 9(3) 9(2)

C(9) 31(3) 23(3) 31(3) 8(2) 13(2) 8(2)

C(10) 32(3) 25(3) 15(2) 5(2) 8(2) 14(2)

C(11) 22(2) 18(2) 25(3) 4(2) 11(2) 10(2)

C(12) 26(3) 19(2) 21(3) 4(2) 7(2) 10(2)

C(13) 32(3) 22(3) 11(2) 2(2) 5(2) 12(2)

C(14) 44(3) 19(3) 23(3) 4(2) 12(3) 4(2)

C(15) 59(4) 26(3) 18(3) 7(2) 10(3) 12(3)

C(16) 31(3) 18(2) 17(2) 3(2) 8(2) 9(2)

C(17) 24(3) 27(3) 22(3) 4(2) 4(2) 9(2)

C(18) 26(3) 27(3) 18(3) 2(2) 3(2) 10(2)

C(19) 32(3) 33(3) 29(3) 11(3) 2(2) 10(3)

C(20) 44(4) 42(4) 49(4) -14(3) -2(3) 24(3)

C(21) 124(7) 23(3) 31(4) 12(3) 42(4) 36(4)

C(22) 54(4) 60(5) 48(4) 19(4) 22(4) 25(4)

C(23) 78(6) 43(4) 71(6) 20(4) 25(5) 23(4)

______

Table 5. Hydrogen coordinates ( x 10^4) and isotropic

displacement parameters (A^2 x 10^3) for s51q1m.

______

x y z U(eq)

______

H(1) 4647 2429 3575 34

H(2) 4500 2073 1585 41

H(3) 3417 -85 213 46

H(4) 2608 -1828 896 37

H(7) 1941 -3369 1725 32

H(8) 1322 -4834 2771 38

H(9) 1841 -3986 4852 34

H(10) 2917 -1732 5845 28

H(14A) 5728 4993 6267 47

H(14B) 5965 5365 7656 47

H(14C) 4584 5154 6802 47

H(15A) 3664 377 8518 53

H(15B) 3131 1508 8872 53

H(15C) 4657 1799 9378 53

H(17) 3143 4461 8391 31

H(18) 6489 3965 9793 30

H(19A) -555 98 2650 49

H(19B) -911 1312 3201 49

H(19C) -988 242 3819 49

H(20A) 302 2020 5816 79

H(20B) 522 3179 5298 79

H(20C) 1741 3100 6157 79

H(22A) 9929 6287 9721 78

H(22B) 8369 5719 9436 78

H(22C) 9296 6313 10772 78

H(23A) 9225 8878 8905 96

H(23B) 8531 7350 8204 96

H(23C) 10095 8023 8734 96

______

Table 6. Torsion angles [deg] for s51q1m.

______

O(2)-Cu(1)-O(1)-C(11) -13.7(4)

N(1)-Cu(1)-O(1)-C(11) 175.6(4)

N(2)-Cu(1)-O(1)-C(11) -134.9(11)

O(3)-Cu(1)-O(1)-C(11) 82.4(4)

O(1)-Cu(1)-O(2)-C(13) 18.1(5)

N(1)-Cu(1)-O(2)-C(13) 141.9(8)

N(2)-Cu(1)-O(2)-C(13) -168.6(5)

O(3)-Cu(1)-O(2)-C(13) -79.3(5)

C(19)-S(1)-O(3)-Cu(1) 151.7(3)

C(20)-S(1)-O(3)-Cu(1) -105.5(4)

O(2)-Cu(1)-O(3)-S(1) 124.7(3)

O(1)-Cu(1)-O(3)-S(1) 31.2(3)

N(1)-Cu(1)-O(3)-S(1) -62.7(3)

N(2)-Cu(1)-O(3)-S(1) -144.1(3)

O(2)-Cu(1)-N(1)-C(5) 58.4(9)

O(1)-Cu(1)-N(1)-C(5) -177.9(4)

N(2)-Cu(1)-N(1)-C(5) 8.1(4)

O(3)-Cu(1)-N(1)-C(5) -80.6(4)

O(2)-Cu(1)-N(1)-C(1) -125.3(8)

O(1)-Cu(1)-N(1)-C(1) -1.7(5)

N(2)-Cu(1)-N(1)-C(1) -175.7(5)

O(3)-Cu(1)-N(1)-C(1) 95.7(5)

O(2)-Cu(1)-N(2)-C(10) 8.1(5)

O(1)-Cu(1)-N(2)-C(10) 129.3(11)

N(1)-Cu(1)-N(2)-C(10) 179.5(5)

O(3)-Cu(1)-N(2)-C(10) -87.6(5)

O(2)-Cu(1)-N(2)-C(6) 179.3(4)

O(1)-Cu(1)-N(2)-C(6) -59.5(13)

N(1)-Cu(1)-N(2)-C(6) -9.3(4)

O(3)-Cu(1)-N(2)-C(6) 83.6(4)

C(5)-N(1)-C(1)-C(2) 0.6(9)

Cu(1)-N(1)-C(1)-C(2) -175.5(5)

N(1)-C(1)-C(2)-C(3) 1.4(10)

C(1)-C(2)-C(3)-C(4) -1.7(10)

C(2)-C(3)-C(4)-C(5) 0.1(10)

C(1)-N(1)-C(5)-C(4) -2.3(8)

Cu(1)-N(1)-C(5)-C(4) 174.2(4)

C(1)-N(1)-C(5)-C(6) 177.9(5)

Cu(1)-N(1)-C(5)-C(6) -5.5(6)

C(3)-C(4)-C(5)-N(1) 2.0(9)

C(3)-C(4)-C(5)-C(6) -178.3(5)

C(10)-N(2)-C(6)-C(7) -0.5(8)

Cu(1)-N(2)-C(6)-C(7) -172.4(4)

C(10)-N(2)-C(6)-C(5) -179.2(4)

Cu(1)-N(2)-C(6)-C(5) 8.9(6)

N(1)-C(5)-C(6)-N(2) -2.3(7)

C(4)-C(5)-C(6)-N(2) 177.9(5)

N(1)-C(5)-C(6)-C(7) 179.0(5)

C(4)-C(5)-C(6)-C(7) -0.7(9)

N(2)-C(6)-C(7)-C(8) 1.1(8)

C(5)-C(6)-C(7)-C(8) 179.7(5)

C(6)-C(7)-C(8)-C(9) -1.0(9)

C(7)-C(8)-C(9)-C(10) 0.5(9)

C(6)-N(2)-C(10)-C(9) -0.1(8)

Cu(1)-N(2)-C(10)-C(9) 170.6(4)

C(8)-C(9)-C(10)-N(2) 0.1(9)

Cu(1)-O(1)-C(11)-C(12) 5.1(8)

Cu(1)-O(1)-C(11)-C(14) -172.0(4)

O(1)-C(11)-C(12)-C(13) 5.5(9)

C(14)-C(11)-C(12)-C(13) -177.6(5)

O(1)-C(11)-C(12)-C(16) -176.9(5)

C(14)-C(11)-C(12)-C(16) 0.0(8)

Cu(1)-O(2)-C(13)-C(12) -13.7(8)

Cu(1)-O(2)-C(13)-C(15) 166.2(4)

C(11)-C(12)-C(13)-O(2) -1.1(8)

C(16)-C(12)-C(13)-O(2) -178.7(5)

C(11)-C(12)-C(13)-C(15) 179.1(5)

C(16)-C(12)-C(13)-C(15) 1.5(8)

C(13)-C(12)-C(16)-C(18) 72.5(7)

C(11)-C(12)-C(16)-C(18) -105.2(6)

C(13)-C(12)-C(16)-C(17) -106.4(6)

C(11)-C(12)-C(16)-C(17) 75.9(7)

C(18)-C(16)-C(17)-C(18)#1 0.6(9)

C(12)-C(16)-C(17)-C(18)#1 179.5(5)

C(17)-C(16)-C(18)-C(17)#1 -0.6(9)

C(12)-C(16)-C(18)-C(17)#1 -179.5(5)

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z+2

X-Ray structure s81q1m of crystals from 4,4’-di-(3’acetylacetonato)biphenyl, 2,2’-dipyridyl, and Cu(II) (8)

Experimental

Data Collection

A blue plate crystal of C24 H25 Cl Cu N3 O7 (corresponding to half of8) having approximate dimensions of

0.410 x 0.376 x 0.030 mm was mounted using oil (Infineum V8512) on a glass fiber. All measurements were made on a CCD area detector with graphite monochromated MoK\α radiation.

Cell constants and an orientation matrix for data collection corresponded to a Triclinic cell with dimensions:

a = 10.832(3) Å α = 88.258(5)º

b = 10.876(3) Å β = 83.332(5)º

c = 11.551(4) Å γ = 69.298(4)º

V = 1264.2(7) Å3

For Z = 2 and F.W. = 566.46, the calculated density is 1.488 g/cm3. Based on a

statistical analysis of intensity distribution, and the successful solution and

refinement of the structure, the space group was determined to be:

P-1

The data were collected at a temperature of 153(2)K with a theta range for data

collection of 1.78 to 28.58º. Data were collected in 0.3º oscillations with 20

second exposures. The crystal-to-detector distance was 50.00 mm with the detector at the 28º swing position.

Data Reduction

Of the 11286 reflections which were collected, 5738 were unique (Rint =

0.0253). Data were collected using Bruker SMART detector and processed using SAINT-NT from Bruker.

The linear absorption coefficient, mu, for MoK\a radiation is 1.018 mm-1. An integration absorption correction was applied. Minimum and maximum transmission factors were: 0.6891 and 0.9696, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods1 and expanded using Fourier techniques2. The non-hydrogen atoms were refined anisotropically. Group anisotropic displacement parameters were refined for the disordered perchorate.

Hydrogen atoms were included in idealized positions, but not refined. The final cycle of full-matrix least-squares refinement3 on F2 was based on 5738 reflections and 336 variable parameters and converged (largest parameter shift was 0.001 times its esd) with unweighted and weighted agreement factors of:

R1 = Σ| |Fo|-|Fc| |/Σ|Fo| = 0.0446

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2= 0.1173

The weighting scheme was calc.

calc w=1/[σ2(Fo2)+(0.0824P)2 + 0.3946P] where where P=(Fo2+2Fc2)/3

The standard deviation of an observation of unit weight4 was 1.041.

The weighting scheme was based on counting statistics and included a factor

to downweight the intense reflections. Plots of Σ w (|Fo| - |Fc|)2 versus |Fo|, reflection order in data collection, sin θ/λ and various classes

of indices showed no unusual trends. The maximum and minimum peaks on the

final difference Fourier map corresponded to 0.983 and -0.673 e-/Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber5.

Anomalous dispersion effects were included in Fcalc6; the values for Df' and

Df" were those of Creagh and McAuley7. The values for the mass attenuation

coefficients are those of Creagh and Hubbell8. All calculations were performed

using the Bruker SHELXTL9 crystallographic software package.

References

(1) SHELXS-97 (Sheldrick, 1990)

(2) SHELXL-97 (Sheldrick, 1997)

(3) Full-Matrix Least-Squares refinement on F2:

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2

(4) GooF = S = {w(Fo2-Fc2)2]/(n-p)}1/2 n = number of reflections; p = total number of reflections refined

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallograph

Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J .; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8,

pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3,

pages 200-206 (1992).

(9) Shelxtl for WindowsNT: Crystal Structure Analysis Package, Bruker (1997).

Table 1. Crystal data and structure refinement for s81q1m.

Identification code s81q1m

Empirical formula C24 H25 Cl Cu N3 O7

Formula weight 566.46

Temperature 153(2) K

Wavelength 0.71073 Å

Crystal system, space group Triclinic, P-1

Unit cell dimensions a = 10.832(3) Å α = 88.258(5) º

b = 10.876(3) Å β = 83.332(5) º

c = 11.551(4) Å γ = 69.298(4) º

Volume 1264.2(7) Å3

Z, Calculated density 2, 1.488 Mg/m3

Absorption coefficient 1.018 mm-1

F(000) 584

Crystal size 0.410 x 0.376 x 0.030 mm

Theta range for data collection 1.78 to 28.58 º

Limiting indices -14<=h<=13, -14<=k<=14, -14<=l<=15

Reflections collected / unique 11286 / 5738 [R(int) = 0.0253]

Completeness to theta = 28.58 88.7 %

Absorption correction Integration

Max. and min. transmission 0.9696 and 0.6891

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 5738 / 0 / 336

Goodness-of-fit on F^2 1.041

Final R indices [I>2sigma(I)] R1 = 0.0446, wR2 = 0.1173

R indices (all data) R1 = 0.0584, wR2 = 0.1282

Largest diff. peak and hole 0.983 and -0.673 e-/Å-3

Table 2. Atomic coordinates and equivalent isotropic

displacement parameters (A^2 x 10^3) for s81q1m.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

______

x y z U(eq)

______

Cu(1) 0.07158(3) 0.54798(3) 0.30214(3) 26(1)

O(1) 0.25833(17) 0.50583(17) 0.26644(17) 33(1)

O(2) 0.03484(17) 0.73005(16) 0.27257(17) 35(1)

O(3) 0.0389(2) 0.4884(2) 0.12830(19) 55(1)

C(1) 0.3169(2) 0.5816(2) 0.2201(2) 29(1)

N(1) 0.0936(2) 0.36846(19) 0.36304(18) 26(1)

N(2) -0.1173(2) 0.57786(19) 0.35993(18) 28(1)

N(3) 0.0776(3) 0.2894(3) 0.0454(2) 45(1)

C(2) 0.2539(2) 0.7158(2) 0.1963(2) 27(1)

C(3) 0.1169(3) 0.7826(2) 0.2267(2) 31(1)

C(4) 0.4643(3) 0.5156(3) 0.1892(3) 41(1)

C(5) 0.0557(3) 0.9272(2) 0.2031(3) 41(1)

C(6) 0.3339(2) 0.7932(2) 0.1382(2) 29(1)

C(7) 0.3576(3) 0.7972(3) 0.0182(2) 35(1)

C(8) 0.4240(3) 0.8762(3) -0.0359(2) 36(1)

C(9) 0.4675(2) 0.9550(2) 0.0290(2) 28(1)

C(10) 0.4476(3) 0.9472(3) 0.1494(2) 39(1)

C(11) 0.3818(3) 0.8676(3) 0.2036(2) 39(1)

C(12) 0.2094(2) 0.2684(2) 0.3633(2) 31(1)

C(13) 0.2162(3) 0.1462(3) 0.4053(3) 38(1)

C(14) 0.0992(3) 0.1266(3) 0.4466(3) 39(1)

C(15) -0.0211(3) 0.2297(3) 0.4452(2) 34(1)

C(16) -0.0207(2) 0.3505(2) 0.4037(2) 26(1)

C(17) -0.1414(2) 0.4695(2) 0.4015(2) 28(1)

C(18) -0.2690(3) 0.4738(3) 0.4395(2) 34(1)

C(19) -0.3737(3) 0.5928(3) 0.4367(3) 39(1)

C(20) -0.3481(3) 0.7027(3) 0.3947(3) 37(1)

C(21) -0.2193(3) 0.6918(2) 0.3566(2) 33(1)

C(22) 0.1116(3) 0.3893(3) 0.0724(3) 48(1)

C(23) -0.0573(4) 0.2926(4) 0.0775(4) 61(1)

C(24) 0.1642(3) 0.1851(3) -0.0322(4) 57(1)

Cl(1) 0.66079(11) 0.14287(10) 0.36121(11) 30(1)

O(4) 0.5258(2) 0.1970(3) 0.3430(3) 85(1)

O(5) 0.7159(3) 0.0066(2) 0.3345(3) 80(1)

O(6) 0.7312(3) 0.2055(3) 0.2826(2) 69(1)

O(7) 0.6772(2) 0.1669(2) 0.48059(18) 41(1)

Cl(1A) 0.6361(10) 0.1262(9) 0.3840(9) 30(1)

O(6A) 0.554(3) 0.052(3) 0.422(2) 69(1)

______

Table 3. Bond lengths [A] and angles [deg] for s81q1m.

______

Cu(1)-O(2) 1.9052(18)

Cu(1)-O(1) 1.9064(18)

Cu(1)-N(2) 1.991(2)

Cu(1)-N(1) 1.997(2)

Cu(1)-O(3) 2.232(2)

O(1)-C(1) 1.277(3)

O(2)-C(3) 1.276(3)

O(3)-C(22) 1.234(4)

C(1)-C(2) 1.410(3)

C(1)-C(4) 1.505(4)

N(1)-C(12) 1.339(3)

N(1)-C(16) 1.350(3)

N(2)-C(21) 1.340(3)

N(2)-C(17) 1.357(3)

N(3)-C(22) 1.321(4)

N(3)-C(24) 1.443(4)

N(3)-C(23) 1.454(4)

C(2)-C(3) 1.409(4)

C(2)-C(6) 1.502(3)

C(3)-C(5) 1.506(3)

C(4)-H(4A) 0.9800

C(4)-H(4B) 0.9800

C(4)-H(4C) 0.9800

C(5)-H(5A) 0.9800

C(5)-H(5B) 0.9800

C(5)-H(5C) 0.9800

C(6)-C(7) 1.382(4)

C(6)-C(11) 1.386(4)

C(7)-C(8) 1.394(3)

C(7)-H(7) 0.9500

C(8)-C(9) 1.388(3)

C(8)-H(8) 0.9500

C(9)-C(10) 1.387(4)

C(9)-C(9)#1 1.496(4)

C(10)-C(11) 1.396(3)

C(10)-H(10) 0.9500

C(11)-H(11) 0.9500

C(12)-C(13) 1.381(3)

C(12)-H(12) 0.9500

C(13)-C(14) 1.386(4)

C(13)-H(13) 0.9500

C(14)-C(15) 1.388(4)

C(14)-H(14) 0.9500

C(15)-C(16) 1.386(3)

C(15)-H(15) 0.9500

C(16)-C(17) 1.481(3)

C(17)-C(18) 1.386(3)

C(18)-C(19) 1.389(4)

C(18)-H(18) 0.9500

C(19)-C(20) 1.382(4)

C(19)-H(19) 0.9500

C(20)-C(21) 1.378(4)

C(20)-H(20) 0.9500

C(21)-H(21) 0.9500

C(22)-H(22) 0.9500

C(23)-H(23A) 0.9800

C(23)-H(23B) 0.9800

C(23)-H(23C) 0.9800

C(24)-H(24A) 0.9800

C(24)-H(24B) 0.9800

C(24)-H(24C) 0.9800

Cl(1)-O(4) 1.409(3)

Cl(1)-O(5) 1.417(3)

Cl(1)-O(6) 1.428(3)

Cl(1)-O(7) 1.454(2)

Cl(1)-O(6A) 1.84(2)

O(4)-Cl(1A) 1.305(10)

O(4)-O(6A) 1.74(3)

O(5)-Cl(1A) 1.379(10)

O(6)-Cl(1A) 1.861(11)

O(7)-Cl(1A) 1.386(10)

Cl(1A)-O(6A) 1.42(2)

O(2)-Cu(1)-O(1) 92.72(7)

O(2)-Cu(1)-N(2) 92.43(8)

O(1)-Cu(1)-N(2) 171.94(8)

O(2)-Cu(1)-N(1) 169.29(8)

O(1)-Cu(1)-N(1) 92.69(8)

N(2)-Cu(1)-N(1) 81.25(8)

O(2)-Cu(1)-O(3) 98.38(9)

O(1)-Cu(1)-O(3) 95.59(9)

N(2)-Cu(1)-O(3) 89.78(9)

N(1)-Cu(1)-O(3) 90.29(9)

C(1)-O(1)-Cu(1) 126.65(17)

C(3)-O(2)-Cu(1) 126.67(16)

C(22)-O(3)-Cu(1) 125.3(2)

O(1)-C(1)-C(2) 125.2(2)

O(1)-C(1)-C(4) 114.4(2)

C(2)-C(1)-C(4) 120.4(2)

C(12)-N(1)-C(16) 119.8(2)

C(12)-N(1)-Cu(1) 125.35(17)

C(16)-N(1)-Cu(1) 114.87(16)

C(21)-N(2)-C(17) 119.2(2)

C(21)-N(2)-Cu(1) 125.82(17)

C(17)-N(2)-Cu(1) 114.96(16)

C(22)-N(3)-C(24) 121.6(3)

C(22)-N(3)-C(23) 120.2(3)

C(24)-N(3)-C(23) 117.4(3)

C(3)-C(2)-C(1) 122.4(2)

C(3)-C(2)-C(6) 117.7(2)

C(1)-C(2)-C(6) 119.9(2)

O(2)-C(3)-C(2) 125.3(2)

O(2)-C(3)-C(5) 114.5(2)

C(2)-C(3)-C(5) 120.2(2)

C(1)-C(4)-H(4A) 109.5

C(1)-C(4)-H(4B) 109.5

H(4A)-C(4)-H(4B) 109.5

C(1)-C(4)-H(4C) 109.5

H(4A)-C(4)-H(4C) 109.5

H(4B)-C(4)-H(4C) 109.5

C(3)-C(5)-H(5A) 109.5

C(3)-C(5)-H(5B) 109.5

H(5A)-C(5)-H(5B) 109.5

C(3)-C(5)-H(5C) 109.5

H(5A)-C(5)-H(5C) 109.5

H(5B)-C(5)-H(5C) 109.5

C(7)-C(6)-C(11) 117.7(2)

C(7)-C(6)-C(2) 121.5(2)

C(11)-C(6)-C(2) 120.8(2)

C(6)-C(7)-C(8) 121.5(2)

C(6)-C(7)-H(7) 119.3

C(8)-C(7)-H(7) 119.3

C(9)-C(8)-C(7) 121.1(2)

C(9)-C(8)-H(8) 119.5

C(7)-C(8)-H(8) 119.5

C(10)-C(9)-C(8) 117.2(2)

C(10)-C(9)-C(9)#1 121.7(3)

C(8)-C(9)-C(9)#1 121.2(3)

C(9)-C(10)-C(11) 121.7(2)

C(9)-C(10)-H(10) 119.2

C(11)-C(10)-H(10) 119.2

C(6)-C(11)-C(10) 120.8(3)

C(6)-C(11)-H(11) 119.6

C(10)-C(11)-H(11) 119.6

N(1)-C(12)-C(13) 121.9(2)

N(1)-C(12)-H(12) 119.1

C(13)-C(12)-H(12) 119.1

C(12)-C(13)-C(14) 118.8(2)

C(12)-C(13)-H(13) 120.6

C(14)-C(13)-H(13) 120.6

C(13)-C(14)-C(15) 119.4(2)

C(13)-C(14)-H(14) 120.3

C(15)-C(14)-H(14) 120.3

C(16)-C(15)-C(14) 118.9(2)

C(16)-C(15)-H(15) 120.6

C(14)-C(15)-H(15) 120.6

N(1)-C(16)-C(15) 121.2(2)

N(1)-C(16)-C(17) 114.5(2)

C(15)-C(16)-C(17) 124.3(2)

N(2)-C(17)-C(18) 121.5(2)

N(2)-C(17)-C(16) 114.2(2)

C(18)-C(17)-C(16) 124.3(2)

C(17)-C(18)-C(19) 118.8(2)

C(17)-C(18)-H(18) 120.6

C(19)-C(18)-H(18) 120.6

C(20)-C(19)-C(18) 119.3(2)

C(20)-C(19)-H(19) 120.3

C(18)-C(19)-H(19) 120.3

C(21)-C(20)-C(19) 119.2(3)

C(21)-C(20)-H(20) 120.4

C(19)-C(20)-H(20) 120.4

N(2)-C(21)-C(20) 122.0(2)

N(2)-C(21)-H(21) 119.0

C(20)-C(21)-H(21) 119.0

O(3)-C(22)-N(3) 125.7(3)

O(3)-C(22)-H(22) 117.1

N(3)-C(22)-H(22) 117.1

N(3)-C(23)-H(23A) 109.5

N(3)-C(23)-H(23B) 109.5

H(23A)-C(23)-H(23B) 109.5

N(3)-C(23)-H(23C) 109.5

H(23A)-C(23)-H(23C) 109.5

H(23B)-C(23)-H(23C) 109.5

N(3)-C(24)-H(24A) 109.5

N(3)-C(24)-H(24B) 109.5

H(24A)-C(24)-H(24B) 109.5

N(3)-C(24)-H(24C) 109.5

H(24A)-C(24)-H(24C) 109.5

H(24B)-C(24)-H(24C) 109.5

O(4)-Cl(1)-O(5) 112.0(2)

O(4)-Cl(1)-O(6) 107.4(2)

O(5)-Cl(1)-O(6) 106.8(2)

O(4)-Cl(1)-O(7) 110.28(16)

O(5)-Cl(1)-O(7) 110.48(16)

O(6)-Cl(1)-O(7) 109.73(16)

O(4)-Cl(1)-O(6A) 63.4(9)

O(5)-Cl(1)-O(6A) 67.0(9)

O(6)-Cl(1)-O(6A) 163.1(8)

O(7)-Cl(1)-O(6A) 87.1(8)

Cl(1A)-O(4)-Cl(1) 17.9(4)

Cl(1A)-O(4)-O(6A) 53.2(10)

Cl(1)-O(4)-O(6A) 70.3(9)

Cl(1A)-O(5)-Cl(1) 17.8(4)

Cl(1)-O(6)-Cl(1A) 1.2(3)

Cl(1A)-O(7)-Cl(1) 17.4(4)

O(4)-Cl(1A)-O(5) 121.5(8)

O(4)-Cl(1A)-O(7) 121.5(7)

O(5)-Cl(1A)-O(7) 117.0(7)

O(4)-Cl(1A)-O(6A) 79.4(13)

O(5)-Cl(1A)-O(6A) 81.6(13)

O(7)-Cl(1A)-O(6A) 108.8(12)

O(4)-Cl(1A)-O(6) 90.7(6)

O(5)-Cl(1A)-O(6) 88.3(6)

O(7)-Cl(1A)-O(6) 91.9(5)

O(6A)-Cl(1A)-O(6) 159.3(12)

Cl(1A)-O(6A)-O(4) 47.4(8)

Cl(1A)-O(6A)-Cl(1) 4.5(5)

O(4)-O(6A)-Cl(1) 46.3(6)

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z

Table 4. Anisotropic displacement parameters (A^2 x 10^3) for s81q1m.

The anisotropic displacement factor exponent takes the form:

-2 pi^2 [ h^2 a*^2 U11 + ... + 2 h k a* b* U12 ]

______

U11 U22 U33 U23 U13 U12

______

Cu(1) 26(1) 18(1) 35(1) 3(1) -1(1) -10(1)

O(1) 29(1) 23(1) 48(1) 7(1) -3(1) -11(1)

O(2) 29(1) 21(1) 52(1) 2(1) 6(1) -10(1)

O(3) 65(2) 47(1) 41(1) -6(1) -18(1) -3(1)

C(1) 30(1) 26(1) 35(1) 1(1) -3(1) -13(1)

N(1) 28(1) 21(1) 33(1) 5(1) -8(1) -11(1)

N(2) 28(1) 21(1) 35(1) 0(1) -1(1) -11(1)

N(3) 44(1) 40(1) 48(1) 3(1) -11(1) -7(1)

C(2) 30(1) 22(1) 33(1) 2(1) -1(1) -14(1)

C(3) 34(1) 22(1) 39(1) 1(1) -1(1) -13(1)

C(4) 30(1) 30(1) 60(2) 9(1) -1(1) -10(1)

C(5) 35(1) 20(1) 68(2) 2(1) 3(1) -11(1)

C(6) 27(1) 22(1) 39(1) 4(1) -1(1) -11(1)

C(7) 41(2) 32(1) 39(1) -4(1) 1(1) -23(1)

C(8) 46(2) 32(1) 33(1) -2(1) 2(1) -21(1)

C(9) 26(1) 23(1) 37(1) 3(1) -3(1) -12(1)

C(10) 50(2) 50(2) 35(1) 6(1) -10(1) -38(1)

C(11) 50(2) 45(2) 34(1) 7(1) -6(1) -32(1)

C(12) 28(1) 25(1) 41(1) 4(1) -7(1) -10(1)

C(13) 35(1) 25(1) 53(2) 7(1) -12(1) -8(1)

C(14) 43(2) 25(1) 56(2) 11(1) -13(1) -18(1)

C(15) 34(1) 29(1) 44(2) 7(1) -7(1) -19(1)

C(16) 29(1) 23(1) 30(1) 2(1) -6(1) -12(1)

C(17) 31(1) 23(1) 33(1) -1(1) -4(1) -13(1)

C(18) 34(1) 28(1) 45(2) 0(1) 0(1) -18(1)

C(19) 31(1) 35(1) 52(2) -5(1) 3(1) -16(1)

C(20) 30(1) 26(1) 52(2) -3(1) 2(1) -7(1)

C(21) 34(1) 21(1) 42(1) 1(1) -1(1) -9(1)

C(22) 49(2) 46(2) 45(2) 6(1) -17(1) -11(1)

C(23) 53(2) 57(2) 73(2) 6(2) -2(2) -19(2)

C(24) 50(2) 37(2) 76(2) -6(2) -8(2) -2(1)

Cl(1) 25(1) 21(1) 41(1) 1(1) -5(1) -5(1)

O(4) 33(1) 126(3) 69(2) -24(2) -16(1) 10(1)

O(5) 111(2) 27(1) 81(2) -8(1) -24(2) 4(1)

O(6) 91(2) 84(2) 54(2) 6(2) 0(2) -59(2)

O(7) 41(1) 38(1) 46(1) 3(1) -11(1) -13(1)

Cl(1A) 25(1) 21(1) 41(1) 1(1) -5(1) -5(1)

O(6A) 91(2) 84(2) 54(2) 6(2) 0(2) -59(2)

______

Table 5. Hydrogen coordinates ( x 10^4) and isotropic

displacement parameters (A^2 x 10^3) for s81q1m.

______

x y z U(eq)

______

H(4A) 4983 4427 2425 61

H(4B) 5083 5793 1960 61

H(4C) 4821 4818 1090 61

H(5A) -385 9588 2339 62

H(5B) 641 9418 1189 62

H(5C) 1016 9752 2412 62

H(7) 3281 7450 -284 42

H(8) 4397 8760 -1186 43

H(10) 4795 9973 1962 47

H(11) 3697 8644 2862 47

H(12) 2892 2818 3337 38

H(13) 2994 768 4058 45

H(14) 1014 433 4757 47

H(15) -1022 2177 4722 41

H(18) -2847 3969 4671 41

H(19) -4619 5985 4632 46

H(20) -4185 7849 3922 45

H(21) -2022 7674 3271 39

H(22) 1997 3845 466 57

H(23A) -1067 3695 1275 92

H(23B) -550 2124 1197 92

H(23C) -1011 2979 69 92

H(24A) 1273 1921 -1067 86

H(24B) 1717 999 28 86

H(24C) 2523 1926 -455 86

______

Table 6. Torsion angles [deg] for s81q1m.

______

O(2)-Cu(1)-O(1)-C(1) -10.4(2)

N(2)-Cu(1)-O(1)-C(1) -140.1(5)

N(1)-Cu(1)-O(1)-C(1) 178.9(2)

O(3)-Cu(1)-O(1)-C(1) 88.3(2)

O(1)-Cu(1)-O(2)-C(3) 9.7(2)

N(2)-Cu(1)-O(2)-C(3) -176.5(2)

N(1)-Cu(1)-O(2)-C(3) 129.9(4)

O(3)-Cu(1)-O(2)-C(3) -86.4(2)

O(2)-Cu(1)-O(3)-C(22) 135.6(3)

O(1)-Cu(1)-O(3)-C(22) 42.0(3)

N(2)-Cu(1)-O(3)-C(22) -132.0(3)

N(1)-Cu(1)-O(3)-C(22) -50.7(3)

Cu(1)-O(1)-C(1)-C(2) 6.1(4)

Cu(1)-O(1)-C(1)-C(4) -172.94(18)

O(2)-Cu(1)-N(1)-C(12) -123.3(4)

O(1)-Cu(1)-N(1)-C(12) -3.0(2)

N(2)-Cu(1)-N(1)-C(12) -177.6(2)

O(3)-Cu(1)-N(1)-C(12) 92.6(2)

O(2)-Cu(1)-N(1)-C(16) 58.5(5)

O(1)-Cu(1)-N(1)-C(16) 178.75(17)

N(2)-Cu(1)-N(1)-C(16) 4.09(17)

O(3)-Cu(1)-N(1)-C(16) -85.64(18)

O(2)-Cu(1)-N(2)-C(21) 7.0(2)

O(1)-Cu(1)-N(2)-C(21) 136.7(5)

N(1)-Cu(1)-N(2)-C(21) 178.3(2)

O(3)-Cu(1)-N(2)-C(21) -91.4(2)

O(2)-Cu(1)-N(2)-C(17) -175.75(17)

O(1)-Cu(1)-N(2)-C(17) -46.0(6)

N(1)-Cu(1)-N(2)-C(17) -4.45(17)

O(3)-Cu(1)-N(2)-C(17) 85.87(18)

O(1)-C(1)-C(2)-C(3) 2.9(4)

C(4)-C(1)-C(2)-C(3) -178.1(2)

O(1)-C(1)-C(2)-C(6) -178.2(2)

C(4)-C(1)-C(2)-C(6) 0.8(4)

Cu(1)-O(2)-C(3)-C(2) -4.6(4)

Cu(1)-O(2)-C(3)-C(5) 174.03(19)

C(1)-C(2)-C(3)-O(2) -3.7(4)

C(6)-C(2)-C(3)-O(2) 177.3(2)

C(1)-C(2)-C(3)-C(5) 177.8(3)

C(6)-C(2)-C(3)-C(5) -1.2(4)

C(3)-C(2)-C(6)-C(7) -94.0(3)

C(1)-C(2)-C(6)-C(7) 87.0(3)

C(3)-C(2)-C(6)-C(11) 83.3(3)

C(1)-C(2)-C(6)-C(11) -95.7(3)

C(11)-C(6)-C(7)-C(8) -1.8(4)

C(2)-C(6)-C(7)-C(8) 175.5(3)

C(6)-C(7)-C(8)-C(9) -0.7(4)

C(7)-C(8)-C(9)-C(10) 2.9(4)

C(7)-C(8)-C(9)-C(9)#1 -176.8(3)

C(8)-C(9)-C(10)-C(11) -2.5(4)

C(9)#1-C(9)-C(10)-C(11) 177.1(3)

C(7)-C(6)-C(11)-C(10) 2.2(4)

C(2)-C(6)-C(11)-C(10) -175.2(3)

C(9)-C(10)-C(11)-C(6) 0.0(5)

C(16)-N(1)-C(12)-C(13) -0.7(4)

Cu(1)-N(1)-C(12)-C(13) -178.9(2)

N(1)-C(12)-C(13)-C(14) 1.0(4)

C(12)-C(13)-C(14)-C(15) -0.2(4)

C(13)-C(14)-C(15)-C(16) -0.9(4)

C(12)-N(1)-C(16)-C(15) -0.5(4)

Cu(1)-N(1)-C(16)-C(15) 177.92(19)

C(12)-N(1)-C(16)-C(17) 178.5(2)

Cu(1)-N(1)-C(16)-C(17) -3.1(3)

C(14)-C(15)-C(16)-N(1) 1.2(4)

C(14)-C(15)-C(16)-C(17) -177.7(2)

C(21)-N(2)-C(17)-C(18) 0.6(4)

Cu(1)-N(2)-C(17)-C(18) -176.92(19)

C(21)-N(2)-C(17)-C(16) -178.5(2)

Cu(1)-N(2)-C(17)-C(16) 4.0(3)

N(1)-C(16)-C(17)-N(2) -0.6(3)

C(15)-C(16)-C(17)-N(2) 178.3(2)

N(1)-C(16)-C(17)-C(18) -179.6(2)

C(15)-C(16)-C(17)-C(18) -0.7(4)

N(2)-C(17)-C(18)-C(19) -1.1(4)

C(16)-C(17)-C(18)-C(19) 177.8(2)

C(17)-C(18)-C(19)-C(20) 0.8(4)

C(18)-C(19)-C(20)-C(21) 0.0(4)

C(17)-N(2)-C(21)-C(20) 0.3(4)

Cu(1)-N(2)-C(21)-C(20) 177.5(2)

C(19)-C(20)-C(21)-N(2) -0.7(4)

Cu(1)-O(3)-C(22)-N(3) 116.0(3)

C(24)-N(3)-C(22)-O(3) 172.3(3)

C(23)-N(3)-C(22)-O(3) 2.7(5)

O(5)-Cl(1)-O(4)-Cl(1A) 63.5(15)

O(6)-Cl(1)-O(4)-Cl(1A) -179.6(16)

O(7)-Cl(1)-O(4)-Cl(1A) -60.0(15)

O(6A)-Cl(1)-O(4)-Cl(1A) 15.8(17)

O(5)-Cl(1)-O(4)-O(6A) 47.7(9)

O(6)-Cl(1)-O(4)-O(6A) 164.7(9)

O(7)-Cl(1)-O(4)-O(6A) -75.8(9)

O(4)-Cl(1)-O(5)-Cl(1A) -58.3(15)

O(6)-Cl(1)-O(5)-Cl(1A) -175.7(15)

O(7)-Cl(1)-O(5)-Cl(1A) 65.1(15)

O(6A)-Cl(1)-O(5)-Cl(1A) -12.4(17)

O(4)-Cl(1)-O(6)-Cl(1A) 5(17)

O(5)-Cl(1)-O(6)-Cl(1A) 125(17)

O(7)-Cl(1)-O(6)-Cl(1A) -115(17)

O(6A)-Cl(1)-O(6)-Cl(1A) 59(17)

O(4)-Cl(1)-O(7)-Cl(1A) 57.0(14)

O(5)-Cl(1)-O(7)-Cl(1A) -67.4(14)

O(6)-Cl(1)-O(7)-Cl(1A) 175.1(15)

O(6A)-Cl(1)-O(7)-Cl(1A) -3.3(17)

Cl(1)-O(4)-Cl(1A)-O(5) -88.1(17)

O(6A)-O(4)-Cl(1A)-O(5) 73.2(13)

Cl(1)-O(4)-Cl(1A)-O(7) 93.0(17)

O(6A)-O(4)-Cl(1A)-O(7) -105.7(14)

Cl(1)-O(4)-Cl(1A)-O(6A) -161(2)

Cl(1)-O(4)-Cl(1A)-O(6) 0.3(12)

O(6A)-O(4)-Cl(1A)-O(6) 161.7(12)

Cl(1)-O(5)-Cl(1A)-O(4) 93.0(17)

Cl(1)-O(5)-Cl(1A)-O(7) -88.1(15)

Cl(1)-O(5)-Cl(1A)-O(6A) 165(2)

Cl(1)-O(5)-Cl(1A)-O(6) 3.2(11)

Cl(1)-O(7)-Cl(1A)-O(4) -95.5(16)

Cl(1)-O(7)-Cl(1A)-O(5) 85.5(15)

Cl(1)-O(7)-Cl(1A)-O(6A) 176(2)

Cl(1)-O(7)-Cl(1A)-O(6) -3.5(11)

Cl(1)-O(6)-Cl(1A)-O(4) -175(17)

Cl(1)-O(6)-Cl(1A)-O(5) -54(16)

Cl(1)-O(6)-Cl(1A)-O(7) 63(17)

Cl(1)-O(6)-Cl(1A)-O(6A) -114(18)

O(5)-Cl(1A)-O(6A)-O(4) -124.4(8)

O(7)-Cl(1A)-O(6A)-O(4) 119.8(9)

O(6)-Cl(1A)-O(6A)-O(4) -63(4)

O(4)-Cl(1A)-O(6A)-Cl(1) 74(6)

O(5)-Cl(1A)-O(6A)-Cl(1) -51(6)

O(7)-Cl(1A)-O(6A)-Cl(1) -166(7)

O(6)-Cl(1A)-O(6A)-Cl(1) 11(3)

Cl(1)-O(4)-O(6A)-Cl(1A) 6.0(7)

Cl(1A)-O(4)-O(6A)-Cl(1) -6.0(7)

O(4)-Cl(1)-O(6A)-Cl(1A) -102(6)

O(5)-Cl(1)-O(6A)-Cl(1A) 126(7)

O(6)-Cl(1)-O(6A)-Cl(1A) -163(5)

O(7)-Cl(1)-O(6A)-Cl(1A) 12(6)

O(5)-Cl(1)-O(6A)-O(4) -131.9(7)

O(6)-Cl(1)-O(6A)-O(4) -60(3)

O(7)-Cl(1)-O(6A)-O(4) 114.4(4)

______

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+2,-z

X-Ray structure s20q1m of crystals from 4-(3’-acetylacetonato)pyridine and Cu(II) (9)

Experimental

Data Collection

A green tabular crystal of C22 H18 Cl Cu N3 O6 (doubling this formula corresponds to structure 9including two perchlorate ions for charge neutrality) having approximate dimensions of 0.160 x 0.142 x 0.082 mm was mounted using oil (Infineum V8512) on a glass fiber. All measurements were made on a CCD area detector with graphite monochromated MoK\α radiation.

Cell constants and an orientation matrix for data collection corresponded to a Orthorhombic cell with dimensions:

a = 11.3015(8) Å

b = 25.3610(18) Å

c = 15.2995(11) Å

V = 4385.1(5) Å3

For Z = 8 and F.W. = 519.38, the calculated density is 1.573 g/cm3. Based on a

statistical analysis of intensity distribution, and the successful solution and

refinement of the structure, the space group was determined to be:

Cmca

The data were collected at a temperature of 153(2)K with a theta range for data

collection of 1.61 to 28.70º. Data were collected in 0.3º oscillations with 25

second exposures. The crystal-to-detector distance was 50.00 mm with the detector at the 28º swing position.

Data Reduction

Of the 19818 reflections which were collected, 2858 were unique (Rint =

0.1070). Data were collected using Bruker SMART detector and processed using SAINT-NT from Bruker.

The linear absorption coefficient, mu, for MoK\a radiation is 1.163 mm-1. A numerical absorption correction was applied. Minimum and maximum transmission factors were: 0.8152 and 0.9194, respectively. The data were corrected for Lorentz and polarization effects.

Structure Solution and Refinement

The structure was solved by direct methods1 and expanded using Fourier techniques2. The non-hydrogen atoms were refined anisotropically. The ring system was disordered over two positions at 50%. Hydrogen atoms for C19 and C20 could not be fixed and were not placed in idealized positions. As a result the calculated structure has two fewer hydrogen atoms from that reported. The remaining hydrogen atoms were included in idealized positions, but not refined. The final cycle of full-matrix least-squares refinement3 on F2 was based on 2858 reflections and 218 variable parameters and converged (largest parameter shift was 0.001 times its esd) with unweighted and

weighted agreement factors of:

R1 = Σ| |Fo|-|Fc| |/Σ|Fo| = 0.0457

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2 = 0.1194

The weighting scheme was calc.

calc w=1/[σ2(Fo2)+(0.0714P)2 +3.4288P] where P=(Fo2+2Fc2)/3

The standard deviation of an observation of unit weight4 was 1.033.

The weighting scheme was based on counting statistics and included a factor

to downweight the intense reflections. Plots of Σ w (|Fo| - |Fc|)2 versus |Fo|, reflection order in data collection, sin θ/λ and various classes

of indices showed no unusual trends. The maximum and minimum peaks on the

final difference Fourier map corresponded to 0.587 and -0.929 e-/Å3, respectively.

Neutral atom scattering factors were taken from Cromer and Waber5.

Anomalous dispersion effects were included in Fcalc6; the values for Df' and

Df" were those of Creagh and McAuley7. The values for the mass attenuation

coefficients are those of Creagh and Hubbell8. All calculations were performed

using the Bruker SHELXTL9 crystallographic software package.

References

(1) SHELXS-97 (Sheldrick, 1990)

(2) SHELXL-97 (Sheldrick, 1997)

(3) Full-Matrix Least-Squares refinement on F2:

wR2 = {Σ[w(Fo2-Fc2)2]/Σ[w(Fo2)2]}1/2

(4) GooF = S = {w(Fo2-Fc2)2]/(n-p)}1/2 n = number of reflections; p = total number of reflections refined

(5) Cromer, D. T. & Waber, J. T.; "International Tables for X-ray Crystallograph

Vol. IV, The Kynoch Press, Birmingham, England, Table 2.2 A (1974).

(6) Ibers, J. A. & Hamilton, W. C.; Acta Crystallogr., 17, 781 (1964).

(7) Creagh, D. C. & McAuley, W.J .; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.6.8,

pages 219-222 (1992).

(8) Creagh, D. C. & Hubbell, J.H..; "International Tables for Crystallography",

Vol C, (A.J.C. Wilson, ed.), Kluwer Academic Publishers, Boston, Table 4.2.4.3,

pages 200-206 (1992).

(9) Shelxtl for WindowsNT: Crystal Structure Analysis Package, Bruker (1997).

Table 1. Crystal data and structure refinement for s20r1m.

Identification code s20r1m

Empirical formula C22 H18 Cl Cu N3 O6

Formula weight 519.38

Temperature 153(2) K

Wavelength 0.71073 Å

Crystal system, space group Orthorhombic, Cmca

Unit cell dimensions a = 11.3015(8) Å

b = 25.3610(18) Å

c = 15.2995(11) Å

Volume 4385.1(5) Å3

Z, Calculated density 8, 1.573 Mg/m3

Absorption coefficient 1.163 mm-1

F(000) 2120

Crystal size 0.160 x 0.142 x 0.082 mm

Theta range for data collection 1.61 to 28.70 º

Limiting indices -14<=h<=14, -32<=k<=34, -20<=l<=19

Reflections collected / unique 19818 / 2858 [R(int) = 0.1070]

Completeness to theta = 28.70 96.1 %

Absorption correction Integration

Max. and min. transmission 0.9194 and 0.8152

Refinement method Full-matrix least-squares on F2

Data / restraints / parameters 2858 / 0 / 218

Goodness-of-fit on F^2 1.033

Final R indices [I>2sigma(I)] R1 = 0.0457, wR2 = 0.1194

R indices (all data) R1 = 0.0758, wR2 = 0.1353

Largest diff. peak and hole 0.587 and -0.929 e-/Å-3

Table 2. Atomic coordinates and equivalent isotropic

displacement parameters (A^2 x 10^3) for s20r1m.

U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

______

x y z U(eq)

______

Cu(1) 0.5000 0.368803(17) 0.04022(3) 36(1)

Cl(1) 0.5000 0.11350(4) 0.09103(6) 39(1)

O(1) 0.37747(19) 0.32841(8) -0.01461(12) 40(1)

O(2) 0.3974(2) 0.11955(9) 0.14486(16) 53(1)

O(3) 0.5000 0.1553(2) 0.0283(2) 95(2)

O(4) 0.5000 0.06191(18) 0.0539(3) 92(2)

N(1) 0.5000 0.32397(12) 0.16527(19) 30(1)

N(2) 0.5937(7) 0.4294(3) 0.0677(5) 30(2)

N(3) 0.3609(7) 0.4206(3) 0.0831(4) 27(1)

C(1) 0.5000 0.27178(14) 0.1581(2) 29(1)

C(2) 0.5000 0.23836(14) 0.2292(2) 30(1)

C(3) 0.5000 0.25854(14) 0.3125(2) 29(1)

C(4) 0.5000 0.31318(15) 0.3211(2) 41(1)

C(5) 0.5000 0.34393(15) 0.2464(3) 46(1)

C(6) 0.3908(3) 0.29502(11) -0.07650(18) 35(1)

C(7) 0.2778(3) 0.27352(16) -0.1128(2) 58(1)

C(8) 0.5000 0.27788(14) -0.1096(2) 28(1)