Chapter 11

11.1 Introduction

Review

Jordan, M. A., and Wilson, L., 1998. Microtubules and actin filaments: Dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. v. 10 p. 123–130.

Kries, T., and Vale, R., eds., 1998. Guidebook to Cytoskeletal and Motor Proteins. Oxford University Press.

11.2 General functions of microtubules

Review

Gard, D. L., Cha, B. J., and Schroeder, M. M., 1995. Confocal immunofluorescence microscopy of microtubules, microtubule-associated proteins, and microtubule-organizing centers during amphibian oogenesis and early development. Curr. Top. Dev. Biol. v. 31 p. 383–431.

Howard, J., and Hyman, A. A., 2003. Dynamics and mechanics of the microtubule plus end. Nature v. 422 p. 753–758.

11.3 Microtubules are polar polymers of a- and b-tubulin

Review

Nogales, E., 2001. Structural insight into microtubule function. Annu. Rev. Biophys.

Biomol. Struct. v. 30 p. 397–420.

Research

Song, Y. H., and Mandelkow, E., 1995. The anatomy of flagellar microtubules: Polarity,

seam, junctions, and lattice. J. Cell Biol. v. 128 p. 81–94.

11.4 Purified tubulin subunits assemble into microtubules

Review

Desai, A., and Mitchison, T. J., 1997. Microtubule polymerization dynamics. Annu. Rev.

Cell Dev. Biol. v. 13 p. 83–117.

Job, D., Valiron, O., and Oakley, B., 2003. Microtubule nucleation. Curr. Opin. Cell Biol. v. 15 p. 111–117.

Mitchison, T. J., 1992. Compare and contrast actin filaments and microtubules. Mol. Biol. Cell v. 3 p. 1309–1315.

11.6 A cap of GTP-tubulin subunits regulates the transitions of dynamic instability

Review

Desai, A., and Mitchison, T. J., 1997. Microtubule polymerization dynamics. Annu. Rev.

Cell Dev. Biol. v. 13 p. 83–117.

Howard, J., and Hyman, A. A., 2003. Dynamics and mechanics of the microtubule plus end. Nature v. 422 p. 753–758.

Mitchison, T. J., 1992. Compare and contrast actin filaments and microtubules. Mol. Biol.

Cell v. 3 p. 1309–1315.

Research

Arnal, I., Karsenti, E., and Hyman, A. A., 2000. Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts. J. Cell Biol. v. 149 p. 767–774.

11.7 Cells use microtubule organizing centers to nucleate microtubule assembly

Review

Bornens, M., 2002. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. v. 14 p. 25–34.

Research

Dictenberg, J. B., Zimmerman, W., Sparks, C. A., Young, A., Vidair, C., Zheng, Y.,

Carrington, W., Fay, F. S., and Doxsey, S. J., 1998. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. v. 141 p. 163–174.

Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B., and Agard, D. A., 1995.

Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature v. 378 p. 638–640.

11.8 Microtubule dynamics in cells

Review

Bornens, M., 2002. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. v. 14 p. 25–34.

Research

Komarova, Y. A., Vorobjev, I. A., and Borisy, G. G., 2002. Life cycle of MTs: Persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. v. 115 p. 3527–3539.

Rusan, N. M., Fagerstrom, C. J., Yvon, A. M., and Wadsworth, P., 2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell v. 12 p. 971–980.

11.9 Why do cells have dynamic microtubules?

Research

Holy, T. E., Dogterom, M., Yurke, B., and Leibler, S., 1997. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. USA v. 94 p. 6228–6231.

11.10 Cells use several classes of proteins to regulate the stability of their microtubules

Review

Cassimeris, L., 1999. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr. Opin. Cell Biol. v. 11 p. 134–141.

Lee, V. M., and Trojanowski, J. Q., 1999. Neurodegenerative tauopathies: human disease and transgenic mouse models. Neuron v. 24 p. 507–510.

Research

Desai, A., Verma, S., Mitchison, T. J., and Walczak, C. E., 1999. Kin I kinesins are microtubule-destabilizing enzymes. Cell v. 96 p. 69–78.

Gundersen, G. G., and Bretscher, A., 2003. Cell biology. Microtubule asymmetry. Science v. 300 p. 2040–2041.

Heald, R., 2000. A dynamic duo of microtubule modulators. Nat. Cell Biol. v. 2 p. E11–

E12.

McNally, F. J., 2001. Cytoskeleton: CLASPing the end to the edge. Curr. Biol. v. 11

p. R477–R480.

11.11 Introduction to microtubule-based motor proteins

Review

Gibbons, I. R., 1995. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskeleton v. 32 p. 136–144.

11.12 How motor proteins work

Review

Gibbons, I. R., 1995. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskeleton v. 32 p. 136–144.

Vale, R. D., and Milligan, R. A., 2000. The way things move: Looking under the hood of molecular motor proteins. Science v. 288 p. 88–95.

Woehlke, G., and Schliwa, M., 2000. Walking on two heads: The many talents of kinesin.

Nat. Rev. Mol. Cell Biol. v. 1 p. 50–58.

Research

Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J., and Oiwa, K., 2003. Dynein structure and power stroke. Nature v. 421 p. 715–718.

Gross, S. P., Welte, M. A., Block, S. M., and Wieschaus, E. F., 2002. Coordination of opposite-polarity microtubule motors. J. Cell Biol. v. 156 p. 715–724.

Vallee, R. B. and Höök, P., 2003. Molecular motors: A magnificent machine. Nature v. 421 p. 701–702.

11.13 How cargoes are loaded onto the right motor

Review

Goldstein, L. S., 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. USA v. 98 p. 6999–7003.

Holleran, E. A., Karki, S., and Holzbaur, E. L., 1998. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. v. 182 p. 69–109.

Kamal, A., and Goldstein, L. S., 2002. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. v. 14 p. 63–68.

Vale, R. D., 2003. The molecular motor toolbox for intracellular transport. Cell v. 112 p.

467–480.

11.15 Interactions between microtubules and actin filaments

Review

Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., and Waterman-Storer, C. M., 2003. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. v. 5 p. 599–609.

Research

Bayless, K. J., and Davis, G. E., 2004. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small

GTPase Rho. J. Biol. Chem. v. 279 p. 11686–11695.

11.16 Cilia and flagella are motile structures

Review

Cole, D. G., 2003. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic v. 4 p. 435–442.

Ibañez-Tallon, I., Heintz, N., and Omran, H., 2003. To beat or not to beat: Roles of cilia in development and disease. Hum. Mol. Genet. v. 12 Spec No 1 p. R27–R35.

Pazour, G. J., and Witman, G. B., 2003. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. v. 15 p. 105–110.

Porter, M. E., and Sale, W. S., 2000. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J. Cell Biol. v. 151 p. F37–F42.

11.17 What’s next?

Review

Addinall, S. G., and Holland, B., 2002. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol. v. 318 p. 219–236.

Hirokawa, N., and Takemura, R., 2003. Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem. Sci. v. 28 p. 558–565.

Kirschner, M., and Mitchison, T., 1986. Beyond self-assembly: From microtubules to morphogenesis. Cell v. 45 p. 329–342.

Research

Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J., 1999. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science v. 286 p. 971–974.

Puls, I., Jonnakuty C., LaMonte, B. H., Holzbaur, E. L., Tokito, M., Mann, E., Floeter, M. K., Bidus, K., Drayna, D., Oh, S. J., Brown, R. H., Ludlow, C. L., and Fischbeck, K. H., 2003. Mutant dynactin in motor neuron disease. Nat. Genet. v. 33 p. 455–456.

Zhao, C., et al., 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell v. 105 p. 587–597.

11.21 Supplement: Tubulin synthesis and modification

Review

Cleveland, D. W., 1988. Autoregulated instability of tubulin mRNAs: A novel eukaryotic regulatory mechanism. Trends Biochem. Sci. v. 13 p. 339–343.

Ludueña, R. F., 1998. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. v. 178 p. 207–275.

Rosenbaum, J., 2000. Cytoskeleton: functions for tubulin modifications at last. Curr. Biol. v. 10 p. R801–R803.

Szymanski, D., 2002. Tubulin folding cofactors: half a dozen for a dimer. Curr. Biol. v. 12 p. R767–R769.

11.22 Supplement: Motility assays for microtubule-based motor proteins

Research

Vale, R. D., Reese, T. S., and Sheetz, M. P. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell v. 42 p. 39–50.