Free-Mercury Catalytic Acetylene Hydrochlorination Over Bimetallic Au Bi/Γ-Al2o3 a Low

Free-Mercury Catalytic Acetylene Hydrochlorination Over Bimetallic Au Bi/Γ-Al2o3 a Low

Free-mercury catalyticacetylenehydrochlorination over bimetallic Au–Bi/γ-Al2O3:A low gold contentcatalyst

Jigang Zhao1,*, Xiaoguang Cheng1, Lei Wang1,2,Ruofan Ren1,2,

Junjian Zeng1, Henghua Yang1, Benxian Shen1

aState Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong road, Shanghai 200237, PR China;

bTianjin Dagu Chemical Co., Ltd., 1 Xinghua Road, Tianjin 300455, PR China

Tables of Content

Fig. S1 Catalyst experimental setup

Fig. S2 Gas chromatogram spectrum of the products

Fig. S3Catalytic performance of 1Au50Bi/γ-Al2O3catalyst.Fig. S4 TGA profile of γ-Al2O3 support

Fig. S4 Isothermal adsorption-desorption curves of fresh samples

Fig.S5 SEM images of:fresh0.1Au/γ-Al2O3(a), fresh 0.1Au5Bi/γ-Al2O3(b), used 1Au/γ-Al2O3, running for 4 h (c) and used 0.1Au5Bi/γ-Al2O3, running for 13h (d)

Fig. S6 TGA profile of used 0.1Au5Bi/γ-Al2O3catalyst under N2 atmosphere

Fig. S7 TGA profile of γ-Al2O3support

Fig. S8 XRD pattern of BiOCl

Tab. S1 The real loading values of the different catalysts detected by ICP-AES

Tab. S2 Some ofthe reported results of Au-base catalysts with AC as the support

Tab.S3. Textural characterization

Tab. S4Relative content of Au species in the catalysts before and after reaction,determined byXPS

1-buffer tank 2-silica-gel drier 3-5A molecular drier 4-mass flow controller

5-fixed bed reactor 6-sodium hydroxide tank

Fig. S1 Catalyst experimental setup

Fig. S2 Gas chromatogram spectrum of the products. Analysis conditions were as follows: Al2O3PLOTcolumn type; column temperature, 50°C; detector type, flame ionization detector (FID); detector and vaporizer temperature, 180°C and injection volume, 20 μL.

Fig. S3Catalytic performance of 0.1Au5Bi/γ-Al2O3catalyst. Reaction conditions: Temperature (T) = 150 °C, C2H2gas hourly space velocity (GHSV) = 360 h−1, Pressure(P)=0.1 MPa, feed volume ratioVHCl/VC2H2= 1.05.

Fig. S4 Isothermal adsorption-desorption curves of fresh samples

(a) (b)

(c) (d)

Fig S5 SEM images of:fresh1Au/γ-Al2O3(a), fresh 0.1Au5Bi/γ-Al2O3(b), used 0.1Au/γ-Al2O3, running for 4 h (c) and used 0.1Au5Bi/γ-Al2O3, running for 13h (d)

Fig. S6 TGA profile of used 0.1Au5Bi/γ-Al2O3catalyst under N2 atmosphere

Fig. S7 TGA profile of γ-Al2O3 support

Fig. S8 XRD pattern of BiOCl

Tab. S1 The real loading values of the different catalysts detected by ICP-AES

Catalyst / Au wt(%) / Bi wt (%)a
0.1Au/γ-Al2O3 / 0.082 / -
5Bi/γ- Al2O3 / - / 2.81
0.05Au5Bi/γ- Al2O3 / 0.043 / 2.91
0.1Au5Bi/γ- Al2O3 / 0.092 / 2.86
0.2Au5Bi/γ- Al2O3 / 0.186 / 2.72
0.3Au5Bi/γ- Al2O3 / 0.267 / 2.95

aThe real values of Bi is lower than the set value due to the hydrolysis of BiCl3

Tab. S2 Some ofthe reported results of Au-base catalysts with AC as the support

Catalysts / Au wt(%) / GHSV(h-1) / XC2H2 / SVCM
Au/SAC [13] / 1.0% / 360 / 80.4 / 99.9
Au-Co(Ⅲ)/SAC[16] / 1.0% / 360 / 92.0 / 99.9
Au-La/SAC [15] / 1.0% / 360 / 90.0 / 99.9
Au-Co-Cu/SAC [13] / 1.0% / 360 / 99.8 / 99.9

Tab.S3. Textural characterization

Samples / SBET(m2/g)a / Vp(cm3/g)b / Dp(nm)c
Fresh / Used / Fresh / Used / Fresh / Used
γ-Al2O3 / 188.8 / - / 0.486 / - / 9.34 / -
0.1Au/γ-Al2O3 / 187.2 / 132.8 / 0.485 / 0.443 / 9.33 / 9.11
5Bi/γ-Al2O3 / 185.5 / 155.3 / 0.483 / 0.462 / 9.31 / 9.21
0.05Au5Bi/γ-Al2O3 / 186.0 / 164.3 / 0.485 / 0.471 / 9.32 / 9.23
0.1Au5Bi/γ-Al2O3 / 186.3 / 163.5 / 0.486 / 0.473 / 9.35 / 9.28
0.2Au5Bi/γ-Al2O3 / 185.8 / 152.9 / 0.484 / 0.466 / 9.35 / 9.25
0.3Au5Bi/γ-Al2O3 / 187.1 / 146.8 / 0.482 / 0.461 / 9.30 / 9.23

aBET specific surface area; bBJH total pore volume; cAverage pore diameter

Tab. S4Relative content of Au species in the catalysts before and after reaction, determined byXPSa

Catalyst / Au species (%) / Binding Energy (eV)
Au3+ / Au1+ / Au0 / Au3+ / Au1+ / Au0
Fresh 0.1Au/γ-Al2O3 / 0b / 0b / 100 / 86.3 / - / 84.0
Used 0.1Au/γ-Al2O3 / 0b / 0b / 100 / 86.3 / - / 84.0
Fresh 0.1Au5Bi/γ-Al2O3 / 46.7 / 3.6 / 49.7 / 86.4 / 85.1 / 83.7
Used 0.1Au5Bi/γ-Al2O3 / 33.3 / 15.1 / 51.6 / 86.5 / 85.2 / 83.7

a The relative content of Au species was for reference only due to the low total loading of metal present. But it can provide some information.

b The active component Au3+ can be reduced to Au0 leading to the Au3+ content was too low to below the XPS lower bound in the preparation and storage process of the catalysts.