Polyol preparation by liquefaction of technical lignins in crude glycerol

Louis C. Muller1, Sanette Marx1, Hermanus C.M. Vosloo2

1Energy systems, School of Chemical and Minerals Engineering, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

2Research Focus Area for Chemical Resource Beneficiation: Catalysis and Synthesis Research Group, North-West University, Private Bag X6001, Potchefstroom 2520, South Africa

SUPPLEMENTARY MATERIAL

TABLE S1 Signal assignment of the 1H NMR lignin spectra

δ (ppm) / Assignment / Reference
Organosolv lignin:
7.3-7.6 / Aromatic protons in positions 2 and 6 of p-hydroxyphenyl structures / Seca et al. [1]
6.6-6.8 / Aromatic protons in syringyl and guaiacyl structures / Xu et al. [2]
4.8-5.0 / Hβ in β-O-4 structures / Xu et al. [2]
4.2 / HƔ in β-O-4 structures / Sun et al. [3]
1.9-2.1 / Methyl or methylene protons adjacent to double bonds or carbonyl groups / Marchessault et al. [4]
lignin acetoxy groups / Ralph et al. [5]
0.8-1.5 / Aliphatic protons in lignin or xylans / Xu et al. [2]
Kraft lignin:
8.5 / Phenolic protons / Fernandez-Costas et al. [6]
6.6-6.9 / Aromatic protons in syringyl and guaiacyl structures / Sun et al. [3]
4.0-4.8 / Hβ,HƔ in β-O-4 structure / Sun et al. [3]
0.8-1.7 / Aliphatic protons / Sun et al. [3]
Lignosulphonate
6.6-6.7 / Aromatic protons in syringyl and guaiacyl structures / Sun et al. [3]
4.0-5.0 / Hα, Hβ, HƔ in β-O-4 structure / Zhou et al. [7]
0.8-1.8 / Aliphatic protons in lignin or contaminants / Fernandez-Costas et al. [6]
General
3.7 / Methoxy / Xu et al. [2],
Hu et al. [8]
3.4 / Water / Gottlieb et al. [9]
3.2 / Methanol (impurity)
2.5 / DMSO
2.1 / Acetone (impurity)

TABLE S2 Quantitative 31P NMR OH analysis: Approximate integration ranges [10-12]

Functional group / RII (ppm) / RI (ppm)
Aliphatic OH / 145.30-150.80 / Primary: 132.0-133.6
Secondary: 133.7-138.0
Internal standard (Cyclohexanol) / 145.00-145.30 / 133.6-133.7
Condensed phenolic / 143.30-145.00 & 140.30-142.00
Syringyl / 142.00-143.30
Guaiacyl / 138.55-140.30
p-Hydroxyphenyl / 137.30-138.55
Carboxylic acids / 133.70-135.60

TABLE S3 Signal assignment of the crude glycerol and polyol 1H NMR spectra

δ (ppm) / Assignment / Reference
5.3 / Olefinic protons
1,3-DAG OH / Miyake et al. [13]
Nebel et al. [14]
Sustere et al. [15]
4.5 / Ethanol OH
Glycerol primary and secondary OH / SDBSWeb [16]
Nebel et al. [14]
4.0 / -CH2O- in FAEE and TAG / Rosset et al. [17]
3.95, 3.88 / Glycerol CH and CH2 in MAG and DAGa / Sustere et al. [15]
3.43 / Water
Ethanol CH2
Glycerol CH / Fernandez-Costas et al. [6]
SDBSWeb [16]
Sustere et al. [15]
3.23-3.38 / Glycerol CH and CH2 / Nebel et al. [14]
2.7 / Divinyl methylene / Miyake et al. [13]
2.5 / DMSO / Fernandez-Costas et al. [6]
2.25 / α-Carbonyl methylene / Monteiro et al. [18]
2.07 / Acetone (impurity) / Gottlieb et al. [9]
2.0 / Allyl methylene / Miyake et al. [13]
1.85 / Acetic acid CH3
Methylene adjacent to triple bond in fatty acids / Gottlieb et al. [9]
AOCS [19]
1.5 / β-Carbonyl methylene / Monteiro et al. [18]
1.2-1.3 / Methylene protons on saturated carbon / Miyake et al. [13]
1.15 / FAEE ethoxy CH3 / Guzatto et al. [20]
1.04 / Ethanol CH3 / SDBSWeb [16]
0.8 / Terminal methyl / Monteiro et al. [18]
aMAG and DAG additionally have numerous signals in the range 3.2 – 5.0 ppm which overlaps with the other signals listed above.

TABLE S4 Signal assignment of the crude glycerol and polyol 31P NMR RII spectra

δ (ppm) / Assignment / Reference
148.20 / 1,2-Diacylglycerol / Spyros and Dais [21]
148.02 / 2-Monoacylglycerol / Nagy et al. [22]
147.65 / 1-Monoacylglycerol (CH2) / Christophoridou and Dais [23]; Nagy et al. [24]
147.36-147.39 / Primary OH in glycerol / Nagy et al. [22]
146.70 / 1,3-Diacylglycerol / Spyros and Dais [21]
146.65 / Ethanol / Nagy et al. [22]
146.43-146.45 / 1-Monoacylglycerol (CH) / Nagy et al. [22]
146.32 / Secondary OH in glycerol / Christophoridou and Dais [23]
134.72-134.74 / Fatty acids / Lucas-Torres et al. [25]

References

[1] A.M.L. Seca, J.A.S. Cavaleiro, F.M.J. Domingues, A.J.D. Silvestre, D. Evtuguin, C.P. Neto, Structural characterization of the lignin from the nodes and internodes of Arundo donax reed, J. Agric. Food Chem. 48(3) (2000) 817-824.

[2] F. Xu, J.X. Sun, R.C. Sun, P. Fowler, M.S. Baird, Comparative study of organosolv lignins from wheat straw, Ind. Crops Prod. 23(2) (2006) 180-193.

[3] Y.C. Sun, J.L. Wen, F. Xu, R.C. Sun, Fractional and structural characterization of organosolv and alkaline lignins from Tamarix austromogoliac, Sci. Res. Essays 5(24) (2010) 3850-3864.

[4] R. Marchessault, S. Coulombe, H. Morikawa, D. Robert, Characterization of aspen exploded wood lignin, Can. J. Chem. 60(18) (1982) 2372-2382.

[5] S. Ralph, L. Landucci, J. Ralph, NMR database of lignin and cell wall model compounds, http://www.researchgate.net/publication/228884438_NMR_Database_of_Lignin_and_Cell_Wall_Model_Compounds, 2004.

[6] C. Fernandez-Costas, S. Gouveia, M.A. Sanroman, D. Moldes, Structural characterization of kraft lignins from different spent cooking liquors by 1D and 2D nuclear magnetic resonance spectroscopy, Biomass Bioenergy 63 (2014) 156-166.

[7] H.F. Zhou, D.J. Yang, X.Q. Qiu, X.L. Wu, Y. Li, A novel and efficient polymerization of lignosulfonates by horseradish peroxidase/H2O2 incubation, Appl. Microbiol. Biotechnol. 97(24) (2013) 10309-10320.

[8] L.H. Hu, J. Zhou, C.Y. Bo, B.C. Liang, Y.H. Zhou, Physicochemical characterization of oxidatively degraded calcium lignosulfonate via alkaline hydrogen peroxide, Adv. Mater. Res. 887-888 (2014) 575-580.

[9] H.E. Gottlieb, V. Kotlyar, A. Nudelman, NMR chemical shifts of common laboratory solvents as trace impurities, J. Org. Chem. 62(21) (1997) 7512-7515.

[10] A. Granata, D.S. Argyropoulos, 2-Chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane, a reagent for the accurate determination of the uncondensed and condensed phenolic moieties in lignins, J. Agric. Food Chem. 43(6) (1995) 1538-1544.

[11] B. Ahvazi, O. Wojciechowicz, T.M. Ton-That, J. Hawari, Preparation of lignopolyols from wheat straw soda lignin, J. Agric. Food Chem. 59(19) (2011) 10505-10516.

[12] D.S. Argyropoulos, Quantitative phosphorus-31 NMR analysis of six soluble lignins, J. Wood Chem. Technol. 14(1) (1994) 65-82.

[13] Y. Miyake, K. Yokomizo, N. Matsuzaki, Determination of unsaturated fatty acid composition by high-resolution nuclear magnetic resonance spectroscopy, J. Am. Oil Chem. Soc. 75(9) (1998) 1091-1094.

[14] B. Nebel, M. Mittelbach, G. Uray, Determination of the composition of acetylglycerol mixtures by 1H NMR followed by GC investigation, Anal. Chem. 80(22) (2008) 8712-8716.

[15] Z. Sustere, R. Kampare, E. Liepins, V. Kampars, The composition of commercial acetylated glycerol samples determined by 13C and 1H NMR. The comparison with gas chromatography, J. Anal. Chem. 69(8) (2014) 763-768.

[16] SDBSWeb, National Institute of Advanced Industrial Science and Technology, Spectral Database for Organic Compounds. http://sdbs.db.aist.go.jp (accessed January 15, 2016).

[17] I.G. Rosset, M.C.H. Tavares, E.M. Assaf, A.L.M. Porto, Appl. Catal., A. 392 (2011) 7.

[18] M.R. Monteiro, A.R.P. Ambrozin, L.M. Liao, A.G. Ferreira, Determination of biodiesel blend levels in different diesel samples by 1H NMR, Fuel 88(4) (2009) 691-696.

[19] AOCS, The Ameriacn Oil Chemists' Society Lipid Library. http://lipidlibrary.aocs.org/Analysis/content.cfm?ItemNumber=40256&navItemNumber=19207 (accessed May 16, 2016).

[20] R. Guzatto, D. Defferrari, Q.B. Reiznautt, I.R. Cadore, D. Samios, Transesterification double step process modification for ethyl ester biodiesel production from vegetable and waste oils, Fuel 92(1) (2012) 197-203.

[21] A. Spyros, P. Dais, Application of 31P NMR spectroscopy in food analysis. 1. Quantitative determination of the mono- and diglyceride composition of olive oils, J. Agric. Food Chem. 48(3) (2000) 802-805.

[22] M. Nagy, B.J. Kerr, C.J. Ziemer, A.J. Ragauskas, Phosphitylation and quantitative 31P NMR analysis of partially substituted biodiesel glycerols, Fuel 88(9) (2009) 1793-1797.

[23] S. Christophoridou, P. Dais, Novel approach to the detection and quantification of phenolic compounds in olive oil based on 31P nuclear magnetic resonance spectroscopy, J. Agric. Food Chem. 54(3) (2006) 656-664.

[24] M. Nagy, M. Foston, A.J. Ragauskas, Rapid quantitative analytical tool for characterizing the preparation of biodiesel, J. Phys. Chem. A. 114(11) (2010) 3883-3887.

[25] C. Lucas-Torres, A. Perez, B. Cabanas, A. Moreno, Study by P-31 NMR spectroscopy of the triacylglycerol degradation processes in olive oil with different heat-transfer mechanisms, Food Chem. 165 (2014) 21-28.