Electronic Supplementary Information

Facile synthesis of spinel LiNi0.5Mn1.5O4 cathode materials using M2(OH)2(C8H4O4)-class metal-organic frameworks

ShifengYang,a,b Wenfeng Ren,a Jian Chena,*

a.Advanced Rechargeable Battery Laboratory, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.

b.University of Chinese Academy of Sciences, Beijing 100049, China

* Corresponding author.

E-mail address:

Tel: +86-411-84379687

Experimental section

Nitrogen adsorption-desorption isotherms were recorded at 77K by using Micromeritics surface area analyzer model (Autosorb iQ2). The specific surface area was calculated using Brunauer-Emmett-Teller (BET) method from adsorption branch of the isotherms. The XPS data were collected using a Thermofisher ESCALAB 250Xi spectrometer with a monochromatic Al Ka source (hν=1486.6 eV). The pressure in the analysis chamber during measurements was maintained at 7.1*10-5 Pa.

Fig. S1 Nitrogen adsorption-desorption isotherms of (a) Ni-Mn-PTA-R, (b) NMO-R and (c) LNMO-R (R=2.0, 2.5, 3.0 and 3.5) samples

Fig. S2 (a-c) SEM image and the corresponding EDS mapping images, (d-e) SEM image and the corresponding EDS spectrum and (f) TEM image of the LNMO-3.0 sample


Fig. S3 Mn2p spectra of (a) LNMO-2.0, (b) LNMO-2.5, (c) LNMO-3.0 and (d) LNMO-3.5 and Ni2p spectra (e)

Fig. S4 SEM images of (a) LNMO-2.5 and (b) LNMO-3.0 materials after 300 charge-discharge cycles

Table S1 Specific surface areas of the samples deduced from the isotherms in Fig.S1

Samples / Specific surface area (m2/g)
R=2.0 / R=2.5 / R=3.0 / R=3.5
Ni-Mn-PTA-R / 7.302 / 11.341 / 13.345 / 29.656
Ni-Mn-O-R / 40.850 / 32.879 / 26.696 / 23.244
LNMO-R / 0.844 / 2.702 / 1.321 / 1.895

Table S2 Ni2p3/2 and Mn2p peak positions, as well as Mn distribution in the LNMO-R samples

sample / Ni2p3/2(eV) / Mn2p1/2 (eV) / Mn2p3/2(eV) / Mn4+(%) / Mn3+(%)
Mn4+ / Mn3+ / Mn4+ / Mn3+
LNMO-2.0 / 854.8;861.2(s) / 654.2 / 652.9 / 643.3 / 641.3 / 28.5 / 71.5
LNMO-2.5 / 854.5;860.9(s) / 654.2 / 653.0 / 642.6 / 641.4 / 35.4 / 64.6
LNMO-3.0 / 854.4;860.9(s) / 654.0 / 653.1 / 642.5 / 641.7 / 54.9 / 45.1
LNMO-3.5 / 854.4;860.9(s) / 653.9 / 653.1 / 642.5 / 641.4 / 54.9 / 45.1

Table S3 Comparisons of the rate performance for the LiNi0.5Mn1.5O4 cathode materials

Sample / rate (C) / specific capacity (mAh g-1) / mid-point voltage(V) / Reference
LiNi0.5Mn1.5O4 / 10 / 119.0 / 4.46 / This work
20 / 114.8 / 4.36
LiNi0.5Mn1.5O4 / 10 / 102 / ~4.50 / [50]
20 / 81 / 4.25
LiNi0.5Mn1.5O4 porous microellipsoids / 10 / 100.4 / 4.35 / [51]
porous LiNi0.5Mn1.5O4 nanorods / 10 / 120 / -- / [52]
20 / 109 / 4.58

Table S4 Comparisons of the cycling performance at high rates for the LiNi0.5Mn1.5O4 cathode materials

Sample / Specific capacity
(mAh g1) / rate / Retention / cycle number / Reference
LiNi0.5Mn1.5O4 / 115.9 / 20C / 93.0% / 150
83.8% / 500 / This work
LiNi0.5Mn1.5O4 sphere / 112.1 / 10C / 79% / 500 / [53]
LiNi0.5Mn1.5O4 particles / 104 / 10C / 90% / 100 / [50]
Porous LiNi0.5Mn1.5O4 microspheres / 118.1/ 20C / 93% / 100 / [54]

Reference

50. Xiao Y, Xiang W, Zhang J et al. (2016) Synthesis of spinel LiNi0.5Mn1.5O4 as advanced cathode via a modified oxalate co-precipitation method. Ionics 22 (8):1361-1368. doi:10.1007/s11581-016-1659-4

51. Pan J, Deng J, Yao Q et al. (2015) Novel LiNi0.5Mn1.5O4 porous microellipsoids as high-performance cathode materials for lithium ion batteries. J Power Sources 288:353-358. doi:10.1016/j.jpowsour.2015.04.133

52. Zhang X, Cheng F, Yang J et al. (2013) LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett 13 (6):2822-2825. doi:10.1021/nl401072x

53. Qian Y X, Deng Y F, Shi Z C et al. (2013) Sub-micrometer-sized LiNi0.5Mn1.5O4 spheres as high rate cathode materials for long-life lithium ion batteries. Electrochem Commun 27:92-95. doi:10.1016/j.elecom.2012.11.004

54. Zhu X, Li X, Zhu Y et al. (2014) Porous LiNi0.5Mn1.5O4 microspheres with different pore conditions: Preparation and application as cathode materials for lithium-ion batteries. J Power Sources 261:93-100. doi:10.1016/j.jpowsour.2014.03.047