Syllabus-Is Updated Yearly!

METO 640

Surface-Atmosphere Interactions

INSTRUCTOR: Professor R. T. Pinker, Room 2427, Space Sciences Building, Phone: (301)-405-5380

Prerequisites: MATH240 and 241; PHYS263; METO621-EQUIVALENT or CONSENT of INSTRUCTOR.

The course deals with micro-scale surface/atmosphere interactions and their parameterization. The objective is to acquaint the students with current observational results and computational techniques for momentum, heat and water vapor transfer in the surface boundary layer, and provide examples of their use in climate research.

1.  INTRODUCTION

a. Course objectives

b. Scales (micro-meso-macro); basis for division

c. Micro-scale in the context of large scale climate

2. RADIATION CLIMATOLOGY*: Review

2.1 Solar radiation at top of atmosphere

a. Sun and orbital characteristics

b. Solar spectrum and constant

c. Zenith angle and air mass; solar declination; equation of time; extraterrestrial radiation

2.2 Simple aspects of radiative transfer

2.3 Radiation at the ground

a. Clear Sky

b. Cloudy Sky

c. Radiative properties of the surface

o Surface albedo

o Surface emissivity

d. Parameterized components of net radiation

3. ENERGY BALANCE AT THE SURFACE

3.1 Components of the energy balance

a. Diurnal variation of the energy balance

b. Annual variation of the energy balance

c Hydroclimatological parameters related to energy balance

3.1 Unique surface/atmosphere interfaces:

Terrestrial Ecosystems

a. Optical properties of vegetation

b. Plant community architecture (i.e., leaf area index; orientation)

c. Radiation regime in plant stands

4. HEAT TRANSFER INTO SOIL

a. The one dimensional diffusion equation

b. Thermal properties of soils

c. Prediction of ground surface temperature, numerical models

i. without vegetation

ii. with vegetation

iii. the force restore method

5. INSTRUMENTS (emphasis on radiation and evaporation)

5.1 What do we measure on micro-scale

5.2 Basic concepts

thermocouple; thermopile; time constant; resolution; sensitivity; accuracy; repeatability; reliability; hystersis

5.3  Methods of radiation measurements

a. Principles of thermal sensitive devices

b. Accuracy of radiation measurements

c. Classification of radiation instruments (pyrheliometers; pyranometers; pyrgeometers; pyrradiometers; net radiometers)

d. Spectral response of radiometers

5.4  Evaporation

a. Weighting lysimeter

b. Soil moisture

c. Eddy correlation

6. INTRODUCTION TO VISCOUS FLOWS

6.1  Basic statistics

6.2 Laminar and turbulent flow

a. Newtonian analysis

b. Navier Stokes Equations

c. Reynolds Equations

d. The closure problem

i. “Austauch” hypothesis

ii. Mixing length theory

iii. K-theory

6.3  Special characteristics of turbulence (homogeneity; stationarity; isotropy; Taylor’s hypothesis)

6.4  Stability criteria

a. Richardson Number

b. Monin-Obukhov

6.5  Neutral boundary layers

a. Velocity profile laws (e.g., power law; log profile; Keyps profile)

b. Surface roughness; displacement height; aerodynamic resistance

c. Surface stress and drag

6.6 Dimensional analysis and similarity theory

6.7 Momentum and heat exchange with homogeneous surfaces

a. The Monin-Obukhov similarity

b. Empirical forms of similarity functions

c. Wind and temperature profiles

6.8  Methods to determine momentum and heat fluxes

a. Surface drag measurements

b. Energy balance

c. Eddy correlation

d. Bulk transfer

e. Gradient or aerodynamic

f. Profile methods

g. Geostrophic departure

6.9  Diurnal variationof surface parameters

a. Air temperature

b. Humidity

c.  Wind speed

7.  EVAPORATION

7.1. The process of evaporation

7.2. Potential evaporation and evapotranspiration

7.3  Micromet methods to determine evaporation

a. Direct measurements

b. Eddy correlation

c. Energy balance/Bowen ratio

d. Bulk transfer

e. Gradient and aerodynamic method

f. Priestly-Taylor

g. Penman method

h. Combination method

i. Monteith method

8. KINETIC ENERGY SPECTRA

8.1  Review of basic concepts

a. Harmonic analysis (Fourier Series)

b. Auto-correlations

c. Spectral analysis

d. White, blue and red spectra

e. Vander Hoven spectra

f. Surface layer normalized spectra (neutral; stratified)

g. Kolmogorov’s hypothesis-inertial sub-range

9.  VEGETATION-ATMOSPHERE-TRANSFER SCHEMES

a. Bucket Model

b. SiB

c. BATS

* Chapter 2 is introduced for completeness and taught only if students lack such background.

Text:

1. Required: None

2. Recommended: Stull, 1988; Panofsky and Dutton, 1984; Arya, 1988 (see references)

REFERENCES

1. Smith, F. B. and D. J. Carson, 1977. Some thoughts on the specification of the boundary layer relevant to numerical modeling. Boundary Layer Meteorology, 12, 307-330.

2. Hillger, D. W. and L. F. Sokol, 1987. Guidelines for the use of SI units in technical writing and presentations. BAMS, 68, 36-39.

3. Brutsaert, W. H., 1982. Evaporation into the atmosphere. D. Reidel Publishing Company, pp. 299.

4. Paltridge, G. W. and C. M. R. Platt, 1976. Radiative processes in meteorology and climatology (Developments in Atmospheric Sciences 5). Elsevir Scientific Publishing Corporation.

5. Liou, Kuo-Nan, 1982. An introduction to atmospheric radiation. International Geophysics Series, Vol. 26, Academic Press.

6. Iqbal, M., 1983. An introduction to solar radiation. Academic Press, pp. 390.

7. Coulson, 1975. Solar and terrestrial radiation. Academic Press, NY.

8. Monteith, J. L., 1975. Vegetation and the atmosphere. Vol. 1, Principles; Academic Press, London, New York, and San Francisco, pp. 278.

9. Budyko, M. I., 1982. The earth’s climate: Past and future. Academic Press, pp. 304.

10. Sellers, W. D., 1965. Physical Climatology, Chicago University Press, pp. 272.

11. Bhumralkar, C. M., 1975. Numerical experiments on the computation of ground surface temperature in an atmospheric general circulation model. JAS, 1, 1246.

12. Deardorff, J. W., 1978. Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J. Geophys. Res., 83.

13. Lin, D. D., 1980. On the force-restore method for prediction of ground surface temperature. J. Geophys. Res., 85, 3251-3254.

14. Dickinson, R. E., 1988. The force-restore method for surface temperatures and its generalization. J. Climate, 1, 1086-1097.

15. Brock, F. V., 1984. Instructor’s Handbook on Meteorological Instrumentation. NCAR/TN-237+IA.

16. Gill, G. C. and P. L. Hexter, 1972. Some instrumentation definitions for us by meteorologists and engineers. BAMS, 53, 846-851.

17. Fritschen, L. D. and L. W. Gay, 1979. Environmental instrumentation. Springer Verlag.

18. Panofsky, H. A. and J. A. Dutton, 1984. Atmospheric turbulence. John Wiley and Sons.

19. Arya, S. P., 1988. Introduction to micrometeorology. Academic Press, Inc., pp. 303. International Geophysics Series, Vol. 42.

20. Rosenberg, N. J., B. L. Blad and S. B. Verma, 1983. Microclimate: the Biological Environment. A. Wiley-Interscience Publication, John Wiley and Sons.

22. Thornthwaite, C. W. and F. K. Hare, 1965. The loss of water to the air. Meteorological Monographs, 6, 163-180.

23. Thom, A. S. and H. R. Oliver, 1977. On Penman’s equation for estimating regional evaporation. Quart. J. R. Met. Soc., 103, 345-357.

24. Businger, J. C., J. C. Wyngaard, Y. Izumi and E. F. Bradley, 1971. Flux-profile relationships in the atmospheric surface layer. JAS, 28, 181-188.

25. Kaimal., J. C., J. Wyngaard, D. A. Haugen, O. R. Cote and Izumi, 1976. Turbulence structure in the convective boundary layer. JAS, 33, 2152-2169.

26. Dyer, A. J., 1974. A review of flux-profile relationships. Boundary-Layer Meteorology, 7, 363-372.

27. Garrett, J. R., 1977. Review of drag coefficients over oceans and continents. Mon. Weathe. Rev., 105, 915-928.

28. Haugen, D. A. (Editor), 1973. Workshop on micrometeorology. American Meteorological Society.

29. Carson, D. J., 1981. Current parameterizations of land-surface processes in atmospheric general circulation models. GARP study conference on land surface process in atmospheric general circulation models. NASA, Goddard Space Flight Center, Greenbelt, MD 20771, Jan. 5-8, 1981.

30. Dickinson, R. E., et al., 1981. Boundary Subroutine for NCAR Global Climate Model. NCAR/TN-173+1A.

31. Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology. Atmospheric Sciences Library, Kluwer Academic Publishers, Dordrecht/Boston/London.

32. Parameterization of fluxes over land surface, 1989 Workshop Proceedings, 24-26 October 1988. European Centre for Medium-Range Weather Forecasts, Shinfield Park, Reading RG2 9AX, U. K.

Recent Relevant Articles:

1. Avissar, R. and M. M. Verstraete, 1990. The representation of continental surface processes in Atmospheric Models. Reviews of Geophysics, 28, 1, 35-52.

2. Pitman, A. J. 1994. Assessing the sensitivity of a land-surface scheme to the parameter values using a single column models. J. Climate, 7, 1856-1869.

3. Henderson-Sellers, A., 1990. Predicting generalized ecosystem groups with the NCAR CCM: First steps towards an interactive biosphere. J. Climate, 3, 917-922.

4. O’Brien, K. L., 1996. Tropical deforestation and climate change. Progress in physical Geography, 20, 311-332.

5. Makin, V. k., V. N. Kudryavtsev, and C. Mastenbroek, 1995. Drag of the sea surface. Boundary Layer Meteorology, 73, 159-182, 1995.

6. Pielke, Sr., R. A.,R. Avissar, M. Raupach, A. J. Dolman, X. Zeng, and S. Denning, 1998. Interactions between the atmosphere and terrestrial ecosystems: influence of weather and climate. Global Change Biology, 4, 4621-475.

7. Sellers, P. J., and J. L. Dorman, 1987. Testing the Simple Biosphere Model (SiB) using point micrometeorological and biophysical data. J. Climate and Appl. Meteorol., 26, No. 5, 622-650.

8. Sellers, P. J., 1985. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sensing, 6, No. 8, 1335-1372.

9. Garrat, J. R. and R. A. Pielke, 1989. On the sensitivity of mesoscale models to surface-layer parameterization constants. Boundary-Layer Meteorology, 48, 377-387.

METO 640 SYLLABUS