Math 3Name ______
5-1 and 5-2 Function Families
In this investigation, you will be working towards the following learning objectives:
- I can use limit notation to describe the end behavior of functions
- I understand the basic function families and their important characteristics
- I can find average rate of change for specified intervals of a function
1.Your family is driving 250 miles to the amusement park Kings Island in Cincinnati, Ohio. Fill in the below table for the hours it will take to make the trip based on the average speed given.
speed (mph) / 10 / 20 / 25 / 40 / 50 / 60 / 70 / 100time (hours)
2.In the past, you have learned the equation . Rearrange this equation to write an equation for time in terms of rate.
3.Graph the datafrom the table on the axes at right.
4.In the future, cars will be allowed to go much faster. How long would it take to get to Kings Island if we could travel
200 mph?500 mph?1000 mph?50,000 mph?
5.As the value of r increases, what value does t appear to approach?
6. Even given your answer to problem (5), could we ever get to Kings Island instantaneously? Explain.
7.The time it takes to get a job done is determined by the number of workers. For instance, if one worker could get the job done in 6 hours, 2 workers could get the work done in 3 hours, 3 workers in 2 hours, and so on. This situation can be modeled by the function . Graph on your calculator. Sketch it below (both branches).
8.Description of the end behavior of d: =_____ = _____
9.Restaurants cook pizzas in very hot ovens, but as soon as the pizza comes out of the oven, it begins cooling. Assume room temperature is 70 degrees. Below is the graph of the temperature of one pizza measure in two minute intervals after coming out of the oven.
Find
9.Find the end behavior of the below graphs. Write your answers in limit notation.
Linear Functions
I. General Rule: Parent Function:
Domain:
Range:
Symmetries (if any):
How do the parameters affect the function? End Behavior (parent):
For the parent function, the average rate of change from
tois . . .
Quadratic Functions
II. General Rule: Parent Function:
Domain:
Range:
x
Symmetries (if any):
How do the parameters (a andc) affect the function?End Behavior (parent – limit notation!):
For the parent function, the average rate of change from
tois . . .
Exponential Functions
III. General Rule: Parent Function:
Domain:
Range:
x
Symmetries (if any):
How do the parameters affect the function?End Behavior (parent – limit notation!):
For the parent function, the average rate of change from
tois . . .
Inverse Variation (odd powers)
IV. General Rule: Parent Function:
Domain:
Range:x
Symmetries (if any):
For the parent function, the average rate of change fromEnd Behavior (parent):
tois . . .
Inverse Variation (even powers)
V. General Rule: Parent Function:
Domain:
Range:x
Symmetries (if any):
For the parent function, the average rate of change fromEnd Behavior (parent):
tois . . .
Square Root Function
VI. General Rule:
Domain:
Range:
Symmetries (if any):
For the parent function, the average rate of change fromEnd Behavior (use limit notation)
tois . . .
Absolute Value Function
Notes:
VII. General Rule:
Domain:
Range:
Symmetries (if any):
For the parent function, the average rate of change fromEnd Behavior (use limit notation)
tois . . .