YU-ISSN 0352-5139

J. Serb. Chem. Soc. Vol. 67. No.5 (2002)

CONTENTS

Electrochemistry

V. B. Mi{kovi}-Stankovi}: The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings (Review)

305

Organic Chemistry

Lj. Krsti}, S. Sukdolak and S. Soluji}: An efficient synthesis of warfarin acetals on montmorillonite clay K-10 with microwaves

325

I. Bari~evi}, Lj. Vi}ovac, V. Marinovi} and M. ^uperlovi}: Investigations of asialoglycoprotein receptor glycosylation by lectin affinity methods

331

Physical Chemistry

A. N. Pankratov: Thermodynamic properties of cadmium compounds from quantum chemical evaluations

339

S. Markovi}, N. Raki}evi} and Dj. Mi{ljenovi}: The temperature dependence of the disproportionation reaction of iodous acid in aqueous sulfuric acid solutions

347

P. I. Premovi} and K. I. Panov: Cometary impacts into ocean: thermodynamical equilibrium calculations of high-temperature O2 generation on the early Earth

353

Inorganic Chemistry

V. M. Djinovi} and T. J. Sabo: Preparation and characterization of facial and meridional isomers of uns-cis-(ethylenediamine-N,N'-di-3-propionato)(S-arginine)cobalt(III) chloride dihydrate

367

Published by the Serbian Chemical Society, Karnegijeva 4/III,
P. O. Box 35-08, YU-11001 Belgrade, Yugoslavia
Printed by the Faculty of Technology and Metallurgy, Karnegijeva 4,
P. O. Box 35-03, YU-11001 Belgrade, Yugoslavia

J. Serb. Chem. Soc. 67 (5)305-324(2002)

UDC 621.357+620.197.5/.6

JSCS-2951

Review paper

R E V I E W

The mechanism of cathodic electrodeposition of epoxy coatings and the corrosion behaviour of the electrodeposited coatings

VESNA B. MI[KOVI]-STANKOVI]

Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, P. O. Box 3503, YU-11120 Belgrade, Yugoslavia

(Received 17 January 2002)

Abstract. The model of organic film growth on a cathode during electrodeposition process proposes the current density-time and film thickness-time relationships and enables the evaluation of the rate contants for the electrochemical reaction of OH– ion evolution and for the chemical reaction of organic film deposition. The dependences of film thickness and rate constants on the applied voltage, bath temperature and resin concentration in the electrodeposition bath have also been obtained. The deposition parameters have a great effect on the cathodic electrodeposition process and on the protective properties of the obtained electrodeposited coatings. From the time dependences of the pore resistance, coating capacitance and relative permittivity, obtained from impedance measurements, the effect of applied voltage, bath temperature and resin concentration on the protective properties of electrodeposited coatings has been shown. Using electrochemical impedance spectroscopy, thermogravimetric analysis, gravimetric liquid sorption experiments, differential scanning calorimetry and optical miscroscopy, the corrosion stability of epoxy coatings was investigated. A mechanism for the penetration of electrolyte through an organic coating has been suggested and the shape and dimensions of the conducting macropores have been determined. It was shown that conduction through a coating depends only on the conduction through the macropores, although the quantity of electrolyte in the micropores of the polymer net is about one order of magnitude greater than that inside the conducting macropores.

Keywords: electrodepositon, cathodic electrodeposition, epoxy coatings, corrosion protection, corrosion stability.

REFERENCES

1. F. Beck, Farbe und Lack 72 (1966) 218

2. F. Beck, Chem. Ing. Techn. 40 (1968) 575

3. F. Beck, Ber. Bunsenges. Phys. Chem. 72 (1968) 445

4. F. Beck, Prog. Org. Coat. 4 (1976) 1

5. F. Beck, in Comprehensive Treatise of Electrochemistry, J. O. M. Bockris, B. E. Conway, E. Yeager and R. E. White, Eds., Vol. 2, Plenum Press, New York, 1981, p. 537

6. F. Beck, H. Guder, Macromol. Chem., Macromol. Symp. 8 (1987) 285

7. P. E. Pierce, J. Coat. Technol. 53 (1981) 52

8. M. Wismer, P. E. Pierce, J. F. Bosso, R. M. Christenson, R. D. Jerabek, R. R. Zwack, J. Coat. Technol. 54 (1982) 35

9. Z. Kovac-Kalko, in Electrodeposition of Coatings, G. E. F. Brewer, Ed., American Chemical Society, Washington D. C., 1973, p. 149

10. P. E. Pierce, Z. Kovac, C. Higginbotham, Ind. Eng. Chem. Prod. Res. Dev. 17(1978) 317

11. J. E. O. Mayne, Brit. Corrosion J. 5 (1970) 106

12. R. E. Touhsaent, H. Leidheiser Jr, Corrosion 28 (1972) 435

13. M. W. Kendig, H. Leidheiser Jr, J. Electrochem. Soc. 123 (1976) 982

14. L. Beaunier, I. Epelboin, J. C. Lestrade, H. Takenouti, Surf. Technol. 4 (1976) 237

15. J. C. Scantlebury, K. N. Ho, J. Oil Col. Chem. Assoc. 62 (1979) 89

16. H. Leidheiser, Prog. Org. Coat. 7 (1979) 79

17. K. Hladky, L. M. Callow, J. L. Dawson, Brit. Corrosion J. 15 (1980) 20

18. F. Mansfeld, Corrosion 37 (1981) 301

19. G. W. Walter, J. Electroanal. Chem. 118 (1981) 259

20. L. M. Callow, J. C. Scantlebury, J. Oil Col. Chem. Assoc. 64 (1981) 140

21. F. Mansfeld, M. W. Kendig, S. Tsai, Corrosion 38 (1982) 478

22. M. W. Kendig, F. Mansfeld, S. Tsai, Corros. Sci. 23 (1983) 317

23. G. W. Walter, Corros. Sci. 26 (1986) 681

24. G. Reinhard, Prog. Org. Coat. 18 (1990) 123

25. U. Rammelt, G. Reinhard, Prog. Org. Coat. 21 (1992) 205

26. B. N. Popov, M. A. Alwohaibi, R. E. White, J. Electrochem. Soc. 140 (1993) 947

27. E. M. Geenen, E. P. M. van Westing, J. H. W. de Wit, Prog. Org. Coat. 18 (1990) 295

28. E. P. M. van Westing, G. M. Ferrari, F. M. Geenen, J. H. W. de Wit, Prog. Org. Coat. 23 (1993) 89

29. F. Deflorian, L. Fedrizzi, P. L. Bonora, Corrosion 50 (1994) 113

30. P. L. Bonora, F. Deflorian, L. Fedrizzi, Electrochim. Acta 41 (1996) 1073

31. L. Fedrizzi, F. Deflorian, P. L. Bonora, Electrochim. Acta 42 (1997) 969

32. V. B. Mi{kovi}, M. D. Maksimovi}, Surf. Technol. 26 (1985) 353

33. V. B. Mi{kovi}-Stankovi}, Ph. D. Thesis, Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, 1989

34. M. D. Maksimovi}, V. B. Mi{kovi}-Stankovi}, N. V. Krstaji}, Surf. Coat. Technol. 27 (1986) 89

35. V. B. Mi{kovi}-Stankovi}, M. D. Maksimovi}, Prog. Org. Coat. 16 (1988) 255

36. V. B. Mi{kovi}-Stankovi}, M. D. Maksimovi}, Za{tita materijala 32 (1991) 13

37. V. B. Mi{kovi}-Stankovi}, M. D. Maksimovi}, J. Serb. Chem. Soc. 51(1986) 545

38. D. M. Dra`i}, V. B. Mi{kovi}-Stankovi}, Corros. Sci. 30 (1990) 575

39. M. D. Maksimovi}, V. B. Mi{kovi}-Stankovi}, Corros. Sci. 33 (1992) 271

40. D. M. Dra`i}, V. B. Mi{kovi}-Stankovi}, Prog. Org. Coat. 18 (1990) 253

41. V. B. Mi{kovi}-Stankovi}, D. M. Dra`i}, J. Serb. Chem. Soc. 56 (1991) 343

42. V. B. Mi{kovi}-Stankovi}, M. D. Maksimovi}, Bull. Electrochem. 9, 2-3 (1993) 69

43. M. D. Maksimovi}, V. B. Mi{kovi}-Stankovi}, J. Serb. Chem. Soc. 59 (1994) 53

44. B. Boukamp, Sol. St. Ionics 20 (1986) 31

45. V. B. Mi{kovi}-Stankovi}, D. M. Dra`i}, Z. Ka~arevi}-Popovi}, Corros. Sci. 38 (1996) 1513

46. V. B. Mi{kovi}-Stankovi}, D. M. Dra`i}, in Organic and Inorganic Coatings for Corrosion Prevention, L. Fedrizzi and P. L. Bonora, Eds., EFC Publications No. 20, The Institute of Materials, London, 1997, p. 33

47. F. Bellucci, L. Nicodemo, Corrosion 49 (1993) 235

48. F. Deflorian, V. B. Mi{kovi}-Stankovi}, P. L. Bonora, L. Fedrizzi, Corrosion 50 (1994) 438

49. V. B. Mi{kovi}-Stankovi}, D. M. Dra`i}, M. J. Teodorovi}, Corros. Sci. 37 (1995) 241

50. J. Crank, The Mathematics of Diffusion, Clarendon Press, Oxford, 1970

51. J. Parks, H. Leidheiser, Jr., Ind. Eng. Chem. Prod. Res. Dev. 25 (1986) 1

52. V. B. Mi{kovi}-Stankovi}, D. M. Dra`i}, Glas CCCLXXX Srpske akademije nauka i umetnosti, Odelj. tehn. nauka 32 (1996) 67.

J. Serb. Chem. Soc. 67(5)325–329(2002)

UDC 547.587.51+552.52:542.913+54-732

JSCS-2952

Original scientific paper

An efficient synthesis of warfarin acetals on montmorillonite clay K-10 with microwaves

LJ. KRSTI]1, S. SUKDOLAK2 and S. SOLUJI]2

1Center of Chemistry, Institute of Chemistry, Technology and Metallurgy, Njego{eva 12., P. O. Box 483, YU-11001 Belgrade, and 2Department of Chemistry, Faculty of Sciences, P. O. Box 60, YU-34000 Kragujevac, Yugoslavia

(Received 24 September, revised 18 December 2001)

The microwave promoted reaction of warfarin with methanol, or ethanol, in the presence of montmorillonite clay K-10 as a catalyst, affords the corresponding acetals, 2-methoxy-2-methyl-4-phenyl-3,4-dihydro-2H-pyrano[3,2-c]chromen-5-one (2) and 2-ethoxy-2-methyl-4-phenyl-3,4-dihydro-2H-pyrano[3,2-c]chromen-5-one (3), respectively, in good yields.

Keywords: warfarin, cyclic acetals, montmorillonite K-10, microwaves.

REFERENCES

1. A. Schonberg, N. Ltif, J. Am. Chem. Soc. 76 (1954) 6208

2. A. Mitra, S. K. Misra, A. Petra, Synth. Commun. 10 (1980) 915

3. L. A. Singer, N. P. Kong, J. Am. Chem. Soc. 88 (1966) 5213

4. N. S. Narasimhan, R. S. Mali, M. V. Barve, Synthesis (1979) 906

5. S. M. Sethan, N. M. Shah, Chem. Rev. 36 (1954) 1

6. M. Ikawa, M. A. Stohmann, K. P. Link, J. Am. Chem. Soc. 66 (1954) 902

7. S. Wawzoek, in Heterocyclic Compounds, R. C. Eldrfield Ed., Wiley, New York, 1951, vol. 2, p. 173

8. S. Sethna, R. Phadka, Org. React. 7 (1953) 1

9. M. Tomita, T. Kikuchi, K. Bassho, T. Hori, Y. Inubichi, Chem. Pharm. Bull., 11 (1963) 1484

10. F. Freeman, E. M. Karcherski, J. Chem. Eng. Data 22 (1977) 355

11. T. S. Li, T. S. Jin, Chin. J. Org. Chem. 16 (1966) 385

12. R. J. Giguere, in Organic Synthesis: Theory and Application, T. Hudlicky, Ed. JAI Press: Green wich, CT 1989; Vol 1, 103.

13. a) A. Stambouli, M. Chastrette, M. Soufiaouli, Tetrahedron Lett. 32 (1991) 1723;
b) J. Berlan, P. Giboreau, S. Lefeuvre, C. Marchand, Tetrahedron Lett. 32 (1991) 2363

14. a) A. Ben Alloum, B. Labiad, D. Willemin, J. Chem. Soc. Chem. Commun. (1989) 386;
b) D. Willemin, A. Ben Alloum, Synth. Commun. 20 (1990) 925;
c) D. Willemin, A. Ben Alloum, Synth. Commun. 21 (1991)63

15. a) A. Caddick, Tetrahedron 51 (1995) 10403;
b) R. S. Varma, M. Varma, A. K. Chatterjee, J. Chem. Soc. Perkin Trans. 1 (1993) 999

16. R. S. Varma, A. K. Chatterjee, M. Varma, Tetrahedron Lett. 34 (1993) 320

J. Serb. Chem. Soc. 67(5)331–338(2002)

UDC 66.095.12:547.963.1:577.112.4

JSCS-2953

Original scientific paper

Investigation of asialoglycoprotein receptor glycosylation by lectin affinity methods

IVONA BARI^EVI], LJILJANA VI]OVAC, VESNA MARINOVI] and MARGITA ^UPERLOVI]

Institute for the Application of Nuclear Energy-INEP, Banatska 31b, YU-11080 Zemun-Belgrade, Yugoslavia

(Received 24 January, revised 27 December 2001)

The asialoglycoprotein receptor belongs to the family of calcium-dependent (C-type) animal lectins. The purified receptor is a glycoprotein in which 10 % of the dry weight consists of sialic acid, galactose, N-acetylglucosamine and mannose. The carbohydrate content of the asialoglycoprotein receptor was investigated by lectin affinity methods. The usefulness of plant lectin affinity methods in the characterization of the saccharide content of the asialoglycoprotein receptor, as an animal lectin, is demonstrated. RCA I, ConA, PHA, SNA I and WGA showed greater affinity toward the asialoglycoprotein receptor, while PSL, AAA and PNA showed negligible interactions with the asialoglycoprotein receptor. The obtained results correlated well with the carbohydrate content of the asialoglycoprotein receptor as determined by chemical methods.

Keywords: asialoglycoprotein receptor (ASGP-R), glycosylation, lectins, lectin affinity methods

REFERENCES

1. G. Ashwell, J. Harford, Annu. Rev. Biochem. 51 (1982) 531

2. W. I. Weis, R. Kohn, R. Fourne, K. Drickamer, W. A. Henerickson, Science 254 (1991) 1608

3. R. J. Stockert, Physiol Rev. 75 (1995) 591

4. C. P. J. Maury, Scand. J. Gastroenterol. 18 (1983) 321

5. T. Kawasaki, G. Ashwell, J. Biol. Chem. 251 (1976) 5292

6. M. Spiess, Biochemistry 29 (1990) 10009

7. P. H. Weigel, in Glycoconjugates: Composition, Structure and Function, H. J. Allen and E. C. Kisailus, Eds., Marcel Dekker, New York, 1992, p. 421

8. R. L. Hudgin, W. E. Pricer, G. Ashwell, R. J. Stockert, A. G. Morell, J. Biol. Chem. 249 (1974) 5536

9. U. K. Laemmli, Nature (Lond.) 227 (1970) 680

10. B. B. L. Agarwal, I. J. Goldstein, Methods in Enzymology 28, part. B, Academic Press, 1972, p. 313

11. E. V. Driessche, G. Smets, R. Dejaegere, L. Kanarek, Lectins-Biology, Biochemistry, Clinical Biochemistry, 2, Walter de Gruyter & Co, 1982, p. 729

12. M. ^uperlovi}, M. Movsesijan, D. \or|evi}, Jugoslav. Physiol. Pharmacol. Acta 17 (1981) 211

13. R. Lotan, D. Danon, N. Sharon, J. Biol. Chem. 250 (1975) 8518

14. P. Vretblad, Biochim. Biophys. Acta 434 (1976) 169

15. W. F. Broekart, M. Nsimba-Lubaki, B. Peeters, J. Peumans, Biochem. J. 221 (1984) 163

16. J. B. Hunter, M. R. Suresh, A. A. NouJaim, D. S. Hagen, D. J. Heeley, R. G. Micetich, Biochem Arch. 2 (1986) 319

17. M. B. Wilson, P. K. Nakane, in Immunofluorescence and Related Staining Techniques, Elsevier/North-Holland, 1978, p. 215

18. M. T. Goodarzi, G. A. Turner, in The Protein Protocols Handbook, J. M. Walker, Ed., Humana Press Inc., Totowa, 1996, p. 619

19. L. Hudson, F. C. Hay, Practical Immunology 102, Blackwell Scientific Publications (1976)

20. F. Greenwood, W. Hunter, J. Glover, Biochem. J. 89 (1963) 114

21. D. A. Blake, I. J. Goldstein, Methods in Enzymology 83, Academic Press, New York (1982) p. 127

22. T. I. Michalak, B. Lin, Hepatology 20 (1994) 275

23. D. M. Bollag, S. J. Edelstein, Protein Methods, Wiley, N.Y. 1991

24. I. A. M. Van der Schaal, T. J. J. Logman, C. L. Diaz, J. W. Kijne, Anal. Biochem. 140 (1984) 48

25. E. Skutelsky, D. Danon, N. Sharon, J. Biol. Chem. 250 (1975) 8518

26. M. D. Hussain, R. G. Micetich, A. Shysh, M. R. Suresh, Biochem. Arch. 6 (1990) 159

27. K. Kornfeld, M. L. Reitman, R. Kornfeld, J. Biol. Chem. 256 (1982) 6633

28. C. S. A. Wright, J. Mol. Biol. 215 (1990) 635

29. L. Bhattacharyya, C. Ceccarini, P. Lorenzoni, C. F. Brewer, J. Biol. Chem. 262 (1987) 1288

30. R. D. Cummings, S. Kornfeld, J. Biol. Chem. 257 (1982) 11230

31. L. Bhattacharyya, C. F. Brewer, Arch. Biochem. Biophys. 262 (1988) 605

32. N. Shibuya, I. J. Goldstein, W. F. Broekaert, N. Nsimba-Lubaki, B. Peeters, W. J. Peumans, J. Biol. Chem. 262 (1987) 1596

33. T. Kawasaki, G. Ashwell, J. Biol. Chem. 251 (1976) 1296.

J. Serb. Chem. Soc. 67(5)339–346(2002)

UDC 661.848:536.77:66.011

JSCS-2954

Original scientific paper

Thermodynamic properties of cadmium compounds from
quantum chemical evaluations

ALEXEI N. PANKRATOV

Department of Chemistry, N. G. Chernyshevskii Saratov State University, 83 Astrakhanskaya Street, Saratov 410026, Russia

(Received 29 August, revised 17 December 2001)

By the PM3 method, standard entropies, heats and free energies of formation for some cadmium compounds have been computed. Quantitative relationships Pexper vs, Ptheor, where P is any of the mentioned properties, have been established.

Keywords: cadmium compounds, thermodynamic properties, quantum chemical evaluation, theory-experiment correlation.

REFERENCES

1. Chemical Encyclopaedia (in Russian), Vol. 2, N. S. Zefirov, Editor-in Chief, N. N. Kulov, Vice Editor-in-Chief, Bol’shaya Rossiiskaya Entsikopediya, Moscow 1990, p. 671

2. J. J. P. Stewart, J. Comput. Chem. 10 (1989) 209, 221

3. J. J. P. Stewart, J. Comput. Chem. 12 (1991) 320

4. J. J. P. Stewart, MOPAC, A Semi-Empirical Molecular Orbital Program, QCPE, 1983, Program No. 455

5. T. Clark, A Handbook of Computational Chemistry. A Practical Guide to Chemical Structure and Energy, New York, 1985. Russian Edition: Mir, Moscow, 1990, p. 383

6. J. E. Dennis, R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey 07632, 1983. Russian Edition: Mir, Moscow 1988, p. 440

7. W. Thiel, J. Mol. Struct. Theochem 163 (1988) 415

8. U. Burket, N. L. Allinger, Molecular Mechanics, ACS Monograph 177, American Chemical Society, Washington, D. C. 1982. Russian Edition: Mir, Moscow 1986, p. 364

9. K. S. Krasnov, N. V. Filippenko, V. A. Bobkova, N. L. Lebedeva, E. V. Morozov, T. I. Ustinova, G. A. Romanova, Molecular Constants of Inorganic Compounds: Reference Book (in Russian), K. S. Krasnov Ed., Khimiya, Leningrad, 1979, p. 448

10. V. I. Minkin, B. Ya. Simkin, R. M. Minyaev, Theory of Molecules Structure (in Russian), Phoenix, Rostov-on-Don 1997, p. 560

11. M. W. Wong, K. B. Wiberg, J. Phys. Chem. 96 (1992) 668

12. M. von Arnim, R. Alhrichs, J. Comput. Chem. 19 (1998) 1746

13. I. Antes, G. Frenking, Organometallics 14 (1995) 4263

14. W. Thiel, A. A. Voityuk, J. Phys. Chem. 100 (1996) 616

15. A. N. Pankratov, A. E. Shchavlev, J. Mol. Struct. Theochem 392 (1997) 137

16. A. N. Pankratov, J. Mol. Struct. Theochem 453 (1998) 7

17. A. N. Pankratov, Afinidad 56 (1999) 257

18. A. N. Pankratov, A. E. Shchavlev, Canad. J. Chem. 77 (1999) 2053

19. A. N. Pankratov, J. Serb. Chem. Soc. 65 (2000) 1

20. A. N. Pankratov, I. M. Uchaeva, J. Mol. Struct. Theochem 498 (2000) 247

21. A. N. Pankratov, I. M. Uchaeva, S. Yu. Doronin, R. K. Chernova, J. Serb. Chem. Soc. 66 (2001) 161

22. A. N. Pankratov, Main Group Chemistry 3 (2001) 183

23. A. N. Pankratov, A. E. Shchavlev, Monatsh. Chem. 129 (1998) 1007

24. A. M. Rozen, B. V. Krunov, Zh. Fiz. Khim. 69 (1995) 1891

25. M. Kh. Karapet’yants, M. L. Karapet’yants, Basic Thermodynamic Constants of Inorganic and Organic Substances (in Russian), Khimiya, Moscow, 1968, p. 472

26. Thermal Constants of Substances: Reference Book in Ten Volumes (in Russian), Vol. VI (Zn, Cd, Hg, Cu, Ag, Au, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt), Part 1, Table of Accepted Values, Edited by V. P. Glushko, V. A. Medvedev, G. A. Bergman, V. P. Vasil’ev, L. V. Gurvich, V. I. Alekseev, V. P. Kolesov, V. S. Yungman, N. T. Ioffe, A. F. Vorob’ev, L. A. Reznitskii, I. L. Khodakovskii, N. L. Smirnova, G. L. Gal’chenko, V. F. Baibuz, VINITI Press, Moscow 1972, p. 532

27. V. A. Kireev, Methods of Practical Calculations in Thermodynamics of Chemical Reactions (in Russian), Khimiya, Moscow 1975, p. 536

28. L. V. Gurvich, G. V. Karachevstev, V. N. Kondrat’ev, Yu. A. Lebedev, V. A. Medvedev, V. K. Potapov, Yu. S. Khodeev, Energies of Chemical Bonds Splitting. Ionization Potentials and Electron Affinity (in Russian), V. N. Kondrat’ev Ed., Nauka, Moscow 1974, p. 351

29. M. J. S. Dewar, W. Thiel, J. Amer. Chem. Soc. 99 (1977), 4907

30. M.J. S. Dewar, M. L. McKee, H. S. Rzepa, J. Amer. Chem. Soc. 100 (1978) 3607

31. M. J. S. Dewar, C. H. Reynolds, J. Comput. Chem. 7 (1986) 140

32. A. a. Voityuk, A. A. Bliznyuk, K. Ya. Burshtein, Zh. Strukt. Khim. 28 (1) (1987) 13

33. A. A. Voityuk, Zh. Strukt. Khim. 29 (1) (1988) 138

34. W. Thiel, Tetrahedron 44 (1988) 7393

35. M. J. S. Dewar, E. G. Zoebisch, E. F. Healy, J. J. P. Stewart, J. Amer. Chem. Soc. 107 (1985) 3902

36. M. J. S. Dewar, Yuan Yate-Ching, Inorg. Chem. 29 (1990) 3881

37. M. J. S. Dewar, C. Jie, J. Yu, Tetrahedron 49 (1993) 5003.

J. Serb. Chem. Soc. 67(5)347–351(2002)

UDC 542.9:546.155+535.243:536.5

JSCS-2955

Original scientific paper

The temperature dependence of the disproportionation reaction of iodous acid in aqueous sulfuric acid solutions

SMILJANA MARKOVI],1 NOVICA RAKI]EVI]2 and DJURO MI[LJENOVI]3

1Faculty of Technological Sciences, University of Pri{tina, Kneza Milo{a 7, YU-38220 Kosovska Mitrovica, 2Faculty of Natural Sciences, University of Pri{tina, P. O. Box 131, YU-37000 Kru{evac and 3Faculty of Mathematics, University of Belgrade, Studentski trg 16, P. O. Box, 550, YU-11001 Belgrade, Yugoslavia

(Received 24 June 2001, revised 6 February 2002)

The aim of this work was to examine the disproportionation reaction of iodous acid, HOIO, in aqueous 0.18 mol/dm3 H2SO4 solution, by spectrophotometric measurements of the absorbance. The absorbing HgI+-ion species were generated during the observed disproportionation process. The specific rate constants of disproportionation were calculated in the temperature range from 12 to 30 ºC. The average values ranged from 1.20 to 2.94 mol-1dm3 s-1, respectively. In addition, the values of the activation energies were determined by a graphical method. An average value of 71.20 kJ/mol was found for the chosen temperature interval.

Keywords: iodous acid, disproportionation reaction, iodine compounds, activation energy, specific rate constants.

REFERENCES

1. W. C. Bray, H. A. Liebhafsky, Am. Chem. Soc. 53 (1931) 38

2. D. O. Cooke, Int. J. Chem. Kinet. 12 (1980) 683-98

3. Z. Noszticzius, E. Noszticzius, Z. A. Schelly, J. Phys. Chem. 87 (1983) 510

4. S. Furrow, J. Phys. Chem. 91 (1987) 2129

5. C. Hindmarch, GEAR: Ordinary Differential Equation System Solver Livemore CA 1974

6. I. Masson, C. Argument, J. Chem. Soc. (1938) 1702.

J. Serb. Chem. Soc. 67(5)353–365(2002)

UDC 523.64+541.461.6:541.11.001.2:54-31:550.318.4

JSCS-2956

Original scientific paper

Cometary impacts into ocean: thermochemical equilibrium
calculations of high-temperature O2 generaton on the early Earth

PAVLE I. PREMOVI] and KATJA I. PANOV

Laboratory for Geochemistry and Cosmochemistry, Department of Chemistry, Faculty of Science, University of Ni{, P. O. Box 91, YU-18000 Ni{, Yugoslavia

(Received 5 November 2001)

The early Earth’s atmosphere apparently differed from the present atmosphere mainly in its lack of free O2, and this absence is believed to have been indispensable for the origin of early anaerobic life forms. One of the central problems in Earth science is to explain the apparent transition from the primitive atmosphere (free of O2) to the present atmosphere which contains 21 % of the gas. Theoretical models suggest that the initial form of O2 in the Earth’s atmosphere may have been H2O, which was converted into atmospheric O2 mainly through photosynthesis. We have investigated an alternative (abiotic) method for the conversion of H2O to O2: a high-temperature shock generated during a cometary impact into an ocean (or on land). The calculations presented here show that 1 % of the present level of O2 could have resulted from an icy 1.3´1016 kg comet entering the early (pre-oxygenic) Earth with a velocity of between about 11 and 30 km s-1.

Keywords: comet, oxygen, impact, thermochemical calculation.

REFERENCES

1. J. F. Kasting, Science 259 (1993) 920

2. T. Owen, A. Bar-Nun, Icarus 116 (1995) 215

3. K. Righter, M. Drake, Earth Planet. Sci. Lett. 171 (1999) 383

4. A. Morbidelli, J. Chambers, J. I. Lunine, J. M. Petit, F. Robert, G. B. Valsecchi, K. E. Cyr. Meteorit. Planet. Sci. 35 (2000) 1309

5. J. D. O’Keefy, T. J. Ahrens, Geological Society of America Special Paper 190 (1982) 103

6. S. K. Croft, Geological Society of America Special Paper 190 (1982) 143

7. J. Lewis, H. Watkins, H. Hartmann, Geological Society of America Special Paper 190 (1982) 385

8. H. J. Melosh, A. M. Vickery, Nature 338 (1989) 487

9. N. H. Sleep, K. J. Zahnle, J. F. Kasting, H. J. Morowitz, Nature 342 (1989) 139

10. A. M. Vickery, H. J. Melosh, Geologial Society of America Special Paper 190 (1990) 289

11. E. Pierazzo, H. J. Melosh, Meteorit. Planet. Sci. 35 (2000) 117

12. E. M. Shoemaker, R. F. Wolfe, C. S. Shoemaker, Geological Society of America Special Paper 247 (1990) 155

13. W. T. Holser, M. Schidlowski, F. T. Mackenzie, J. B. Maynard, in Chemical Cycles in the Evolution of the Earth, C. B. Gregor, R. M. Garrers, F. T. Mackenzie Eds., Wiley, New York, 1988, p. 68

14. L. A. Frank, Eos 68 (1987) 343

15. Y. B. Zeld’ovich, Y. P. Razier, Physics of Shock Waves and High-temperature Hydrodynamics Phenomena, Academic Press, San Diego 1967, p. 691

16. H. J. Melosh, Geological Society of America Special Paper 190 (1982) 121

17. E. M. Jones, J. W. Kodis, Geological Society of America Special Paper 190 (1982) 175

18. C. F. Chyba, P. J. Thomas, L. Brookshaw, C. Sagan, Science 249 (1990) 366

19. E. A. Fletcher, R. L. Moen, Science 197 (1977) 1050

20. E. L. King, J. Chem. Ed. 58 (1981) 975

21. H. H. G. Jellinek, J. Chem. Ed. 63 (1986) 1029

22. C. H. Bauer, G. L. Schott, R. E. Duff, J. Chem. Phys. 28 (1958) 1089

23. G. A. Lyzenga, T. J. Ahrens, W. J. Nellis, A. C. Mitchell, J. Chem. Phys. 76 (1982) 6282

24. T. M. Han, B. Runegar, Science 257 (1992) 232

25. R. G. Prinn,, B. Fegley, Earth Planet. Sci. Lett. 83 (1987) 1

26. C. G. A. Harrison, Geophys. Res. Lett. 13 (1999) 1913

27. P. H. Schultz, D. E. Gault, Geological Society of America Special Paper 247 (1990) 239

28. L. F. Jansa, Palaeogeogr. Palaeocl. Palaeoecol. 104 (1993) 271

29. C. Emiliani, E. B. Kraus, E. M. Shoemaker, Earth Planet. Sci. Lett. 55 (1981) 317

30. E. Pierazzo, D. A. Kring, H. J. Melosh, J. Geophys. Res. 103 (1998) 28,607

31. H. J. Melosh, Impact Cratering, Oxford Press, New York, 1989, p. 40

32. K. J. Zahnle, Geological Society of America Special Paper 247 (1990) 271

33. E. M. Shoemaker, P. R. Weismann, C. S. Shoemaker, in Hazard Due to Comets and Asteroids, T. Gehrels Ed., University of Arizona Press, Tuscos, 1994, p. 23

34. T. Takata, J. D. O’Keefe, T. J. Ahrens, G. S. Orton, Icarus 109 (1994) 3

35. H. Ohmoto, Geology 24 (1996) 1135

36. L. A. Frank, J. B. Sigwarth, J. D. Craven, Geophys. Res. Lett. 13 (1986) 307

37. L. A. Frank, J. B. Sigwart, Geophys. Res. Lett. 24 (1997a) 2431

38. L. A. Frank, J. B. Sigwart, Geophys. Res. Lett. 24 (1997b) 2435

39. J. C. Walton, Origins 3 (1977) 66.

J. Serb. Chem. Soc. 67(5)367–372(2002)

UDC 546.733:577.112.385:547.393

JSCS-2957

Original scientific paper

Preparation and characterization of facial and meridional
isomers of uns-cis (ethylenediamine-N,N’-di-3-propionato)(S-arginine)cobalt(III) chloride dihydrate

VESNA M. \INOVI] and TIBOR J. SABO

Faculty of Chemistry, University of Belgrade, P. O. Box 158, YU-11001 Belgrade, Yugoslavia