Chapter 4 Practice Problems

1) If two dice are rolled one time, find the probability of getting theseresults.

a)A sum of 6.

Before we start, let’s find the sample space

If you roll two dice, the

Sample Space is {(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),

(2,1),(2,2),(2,3),(2,4),(2,5), (2,6),

…………………………………..

(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}  36 possibilities

(1,2) means one die landed on 1 and the other die landed on 2.

Those who have the sum of 6 are {(1,5),(5,1),(2,4),(4,2),(3,3)}  That’s 5

P(a sum of 6)=

b) A sum of 7 or 11.

d) A sum greater than 4.

2) At a convention there are 7 mathematics instructors, 5 computer science instructors, 3 statistics instructors, and 4 science instructors. If an instructor is selected, find the probability of getting a science instructor or a math instructor.

3) Selecting a Student In a statistics class there are 18 juniors and 10 seniors; 6 of the seniors are females, and 12 of the juniors are males. If a student is selected at random, find the probability of selecting the following.

MaleFemale Total

Senior 4 6 10

Junior 12 6 18

Total 16 12 28

  1. P(A junior or a female) = (18/28) + (12/28)-(6/28) = 24/28 = 6/7
  2. P(A senior or a female) = (10/28) + (12/28) –(6/28) = 16/28= 4/7

4)Games Sixty-nine percent of U.S. heads of households play video or computer games. Choose 4 heads of households at random. Find theprobability that

a. P(None play video or computer games)= (0.31)4= 0.009 or 0.9%

b. P(all four play video or computer games)=(0.69)4 = 0.227 or 22.7%

5) If 2 cards are selected from a standard deck of 52 cards without replacement, find these probabilities.

a. P (Both are spades) =P (1st is a spade) *P (2nd is a spade) = (13/52)*(12/51) =(1/17)

b. P (Both are the same suit) =P (1st is a suit) * P (2nd is a suit) = (4/4)* (12/51) =12/51=4/17

c. P (Both are kings) =P (1st king) *P (2nd king) = (4/52)*(3/51) = 1/221

6) In a scientific study there are 8 guinea pigs, 5 of which are pregnant. If 3 are selected at random without replacement, find the probability that all are pregnant.

7) In a civic organization, there are 38 members; 15 are men and 23 are women. If 3 members are selected to plan the July 4th parade, find the probability that all 3 are women. Would you consider this event likely or unlikely to occur? Explain your answer.

P(1st is a woman)*P(2nd is a woman)*P(3rd is a woman)= (23/38)(22/37)(21/36) = 0.2100

Since the probability of getting all 3 women is small, the event is unlikely to occur.

8) Below are listed the numbers ofdoctors in various specialties by gender.

PathologyPediatricsPsychiatry Total

Male 12,575 33,020 27,80373,398

Female 5,604 33,351 12,29251,247

Total18,17966,37140,095124,645

Choose 1 doctor at random.

a.

b.

32) How many different ways can 7 different video game cartridges be arranged on a shelf?

7!=5040

9) How many different 3-digit identification tags can be made if the digits can be used more than once? If the first digit must be a 5 and repetitions are not permitted?

b)

10)There are 22threatened species of reptiles in the United States. Inhow many ways can you choose 4 to write about?

(Order is not important.)

11) How many different 4-letter permutations can be formed from the letters in the word decagon?

Similar to a problem done in class

12) A parent-teacher committeeconsisting of 5 people is to be formed from 25 parentsand 6 teachers. Find the probability that the committeewill consist of these people. (Assume that the selectionwill be random.) similar to #2 p. 248 and #6 P. 249

a. All teachers

b. 2 teachers and 3 parents

c. All parents