Supplementary Tables
Table S1. Ambient condition Raman frequencies of hydrous magnesian phyllosilicates. Chrysotile, polygonal serpentine, and Elba antigorite are those used by Auzende et al. (2004) in their high-pressure study.
group serpentines chlorites talc
mineral chrysotile polygonal lizardite antigorite sudoite clinochlore penninite talc
sample Thetford Jeffrey Elba Elba Oman Dora Maira Saas-Zermatt Isua
88 105
133 131 136 94 101 115
204 201 201 206 222 190 204 193
235
233 231 233 241 232 211 204 206 229
267
306 307 259 276 287 290
320 318 318 320 330 331
348 346 347 352 350 356 359 360
373 370 370 365 365 374 378
387 380 380 386 375 388 389
392 387 387 392 403 390
435 432 432 433 430 431
445 452
456 458 459 464
467 464 465 475 461 477 470 477 468
502 527 527 549 532 505
537 552 559 549 551 515
606
625 622 622 628 641 616
690 689 690 690 684 665 675 657 676
705 704 704 697 695 702 685
720 716 733 784
770 769 768 772 769 792
933
960 972
1012 1005 1016
1044 1045 1044 1059 1051
1070 1070 1070 1064
1093 1080 1066
1107 1103 1103 1106 1109 1082 1092
3356 3442 3478
3560 3532 3553
3592 3577 3583
3609 3605 3615
3645 3647 3646 3650 3646 3644 3643
3669 3670 3667 3667
3686 3688 3686 3685 3666 3668 3674 3672 3644
3695 3693 3697 3692 3662
3696 3701 3702 3703 3696 3692 3685 3677
Table S2. Frequencies and Grüneisen parameters of vibrational modes from experiments and DFT calculations. Samples are from Isua (Greenland) for talc, Elba (Italy) and Baja California Sud (Mexico) for lizardite, Oeyama (Japan) and Cuba for antigorite, and from Saas-Zermatt zone (Western Alps) for penninite (chlorite). Numbers are fits to the equation given in (Reynard, et al. 2012), figures in parentheses are uncertainties on the last digits.
Talc Isua Talc DFT
n0 g q n0 g q
104.6(10) 8.3(3) 6.2(5) 124.9(11) 6.80(25) 7.9(4)
116.0(8) 2.05(20) -1.8(1.5) 105.7(14) 1.03(17) -5.1(1)
117.0(3) 1.95(5) 1.0(2)
193.0(4) 2.22(8) -0.0(5) 195.8(18) 2.55(22) 3.8(9)
227.4(4) 0.18(8) -3.7(64) 228 0
290.2(5) 0.80(7) 4.8(14) 288.0(4) 1.0(2) 25(6)
302.0(1) 0.67(1) -0.1(1)
331.3(3) 0.48(3) -4.5(9) 332.3(16) 0.04(2) -18(3)
336.9(7) 0.40(3) -3.6(6)
345.9(9) 0.74(7) 3(1)
360.6(3) 0.42(3) -1(1) 365(1) 0.19(3) -7(1)
371.2(8) 0.18(3) -12(2) 374(2) 0.20(5) -7(2)
377.6(7) 0.44(5) -4.2(17) 385.0(3) 0.23(1) -5.1(3)
429.5(5) 0.48(3) -3.5(9) 427.0(2) 0.24(1) -4.2(2)
431.6(8) 0.31(4) -5.5(18) 428.9(5) 0.35(2) -3.1(4)
450.1(5) 0.40(3) -8(1) 454.8(8) 0.41(3) -4.5(5)
466.9(3) 0.43(2) -6.8(6) 471.9(9) 0.41(3) -3.7(6)
504.0(4) 0.41(1) -3.0(2)
515.0(3) 0.38(1) -3.1(2)
676.3(6) 0.01(1) -22(14) 660.1(7) 0.03(1) -6(4)
676.1(9) 0.15(6) 7(8)
675.9(8) 0.17(2) -5.4(18) 661.9(5) 0.20(2) -1.0(7)
675.5(2) 0.35(1) -3.1(5) 667.9(6) 0.24(1) -3.7(5)
787.9(5) 0.19(1) -2.8(4)
795.0(3) 0.17(1) -4.4(2)
904.9(5) 0.22(1) -3.4(3)
1017.9(3) 0.025(2) -9.8(8)
1023.0(4) 0.15(1) -0.7(5)
1045.9(4) 0.19(1) -3.5(3)
1086.0(2) -0.09(1) 0.8(4)
3661.5(1) 0.010(1) -9.9(9)
3677.1(1) 0.018(1) -8.5(6) 3664 -0.01
Table S2. continued
Lizardite Elba Lizardite DFT
(Lizardite BCS32)
n0 g q n0 g q
106 0
123.99(9) 0.47(6) -1(5)
205 1.07 26 208.0(3) 1.18(15) 11(5)
235.0(6) 1.47(22) 1.4(49) 216.0(4) 2.33(14) -1.5(22)
232.7(4) 2.06(15) 7(3)
291.1(2) 0.09(3) -42(12)
305.7(2) 0.32(7) 4(7) 317.0(4) 0.38(11) 3(11)
349.8(4) 0.50(14) 32(12) 350.2(5) 0.20(9) -16(15)
387(1) 0.37(19) -6(16) 382.0(1) 0.56(2) -6(1)
386.4(4) 0.57(7) -3(4)
394.2(3) 0.62(5) 2(2) 394.0(5) 1.4(2) -0.5(40)
401.6(2) 0.33(3) -9(2) 410.0(0) 0.75(1) 75(1)
433(1) 0.2(2) -24(25) 420.0(1) 0.78(2) -4.2(8)
441.0(1) 1.07(2) 4.5(5)
472.7(4) 1.19(8) 11(2) 464.1(3) 0.78(6) -4(3)
479.0(1) 0.62(2) -14.5(9)
525.2(5) 0.71(9) 10(4) 529.1(1) 0.36(2) -13(2)
538.5(4) 0.85(6) 11(3)
624(1) -0.29(24) 31(37) 626 -0.5
647(1) 1.6(2) 223(5)
689.6(2) 0.64(2) -0.1(10) 665.0(2) 0.67(2) 0(1)
692.2(4) 0.53(4) -3.5(24)
714.0(1) 0.46(1) -4.5(8)
736(1) 0.8(2) 20(9)
770.6(9) 0.8(1) 13(6) 778(1) 1.2(1) 13(4)
905.7(8) 0.61(8) -2(5)
1104.1(2) 0.47(2) -1.2(14) 1011.0(2) 0.56(2) 0.7(13)
3650(1) 0.06(2) 10(12)
3667.6(4) 0.03(1) -13(6) 3681(1) -0.23(4) 20(8)
3684.9(5) 0.16(2) 33(5) 3697(1) -0.20(5) 31(12)
3686.8(5) 0.08(1) 9(6)
3703.1(5) 0.09(2) 42(13) 3746.5(7) 0.01(1) -49(34)
3701.8(3) 0.08(1) 16(5)
Table S2. continued
Antigorite Oeyama Antigorite Cu12 Pennitite SZ24
n0 g q n0 g q n0 g q
164.6(3) 0.40(7) -18(4) 161(1) 2.3(5) 1(5)
210.5(3) 0.27(6) -13(5) 203.5(3) 2.38(9) 5.4(10)
206(1) 3.0(5) 14(6)
231(1) 1.1(3) -3(8)
236.8(2) 1.54(6) -1.5(9) 235.0(6) 1.51(16) 1.1(26)
266.9(3) 0.95(10) 2(3) 287.0(3) 0.64(5) -1.9(18)
308.2(3) 0.40(5) -11(3) 306.5(10) 0.14(9) -28(13) 330(1) 0.49(25) -13(18)
347(1) 0.6(2) 0(5) 358.6(4) 0.41(6) -10(3)
366.6(5) 0.73(7) -8.5(22) 374(1) 0.28(10) -10(8)
379.4(2) 0.68(2) -5(1) 377.7(4) 0.60(6) -6.6(20) 389.0(8) 1.05(10) -2.8(23)
410.0(3) 0.63(5) -3.7(25)
432.9(6) 0.15(3) -29(4) 430.4(3) 0.46(4) -6(2)
450.5(11) 0.25(18) -24(26) 444.9(8) 0.92(12) 2(3)
464.3(4) 0.42(5) -11(3) 460.8(7) 0.35(15) 18(13) 464.0(2) 0.61(3) -7.2(9)
469.5(12) 0.1(1) 5(44) 477(1) 0.71(13) -4(4)
531.2(6) 0.65(7) -1(3) 526(1) 0.38(9) -7.5(50) 531.5(10) 0.84(11) 5(3)
550.6(8) 0.26(6) -17(4) 550.6(9) 0.79(9) 0.6(25)
551.8(5) 0.87(6) 1.2(15)
610.9(9) 1.2(4) 72(22)
685.7(4) 0.36(3) -4(2) 686(1) 0.3(1) -7(7) 657.4(15) 1.54(20) 18.5(37)
697.1(5) 0.41(4) -5(2) 696(1) 0.47(10) 1.5(50) 685.1(2) 0.77(2) 1.7(7)
722.6(2) 0.22(2) -5(2) 714(1) 0.35(11) 7(8)
763.9(7) 0.53(6) 5(3)
1048.7(5) 0.44(3) -1.8(15) 1046(1) 0.36(5) -3.7(28) 1059(1) 0.59(7) 7(3)
1091.7(5) 0.56(3) 10(2)
3478(7) -0.1(2) 30(82)
3622.0(5) -0.04(28)
3639.5 -0.20791
3665.2(7) 0.04(1) -5(4)
3666(1) 0.11(2) -6(8) 3669(1) 0.000(7) -64(470) 3615(3) 0.07(3) -15(9)
3685(1) 0.02(1) -17(9) 3688.2(3) 0.016(3) -16(4) 3671.9(8) 0.061 2(5)
3695.7(3) 0.06(1) 7(4) 3685.3(2) 0.046(3) -0.7(14)
3700.5(2) 0.04(1) -8(2) 3698.3(5) 0.03(1) -14(5)
References
Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Minerals 31(5):269-277
Reynard B, Montagnac G, Cardon H (2012) Raman spectroscopy at high pressure and temperature for the study of the Earth's mantle and planetary materials. In: EMU Notes in Mineralogy, Vol 12, vol 12. pp 365-388
1
- -