Supplementary Tables

Table S1. Ambient condition Raman frequencies of hydrous magnesian phyllosilicates. Chrysotile, polygonal serpentine, and Elba antigorite are those used by Auzende et al. (2004) in their high-pressure study.

group serpentines chlorites talc

mineral chrysotile polygonal lizardite antigorite sudoite clinochlore penninite talc

sample Thetford Jeffrey Elba Elba Oman Dora Maira Saas-Zermatt Isua

88 105

133 131 136 94 101 115

204 201 201 206 222 190 204 193

235

233 231 233 241 232 211 204 206 229

267

306 307 259 276 287 290

320 318 318 320 330 331

348 346 347 352 350 356 359 360

373 370 370 365 365 374 378

387 380 380 386 375 388 389

392 387 387 392 403 390

435 432 432 433 430 431

445 452

456 458 459 464

467 464 465 475 461 477 470 477 468

502 527 527 549 532 505

537 552 559 549 551 515

606

625 622 622 628 641 616

690 689 690 690 684 665 675 657 676

705 704 704 697 695 702 685

720 716 733 784

770 769 768 772 769 792

933

960 972

1012 1005 1016

1044 1045 1044 1059 1051

1070 1070 1070 1064

1093 1080 1066

1107 1103 1103 1106 1109 1082 1092

3356 3442 3478

3560 3532 3553

3592 3577 3583

3609 3605 3615

3645 3647 3646 3650 3646 3644 3643

3669 3670 3667 3667

3686 3688 3686 3685 3666 3668 3674 3672 3644

3695 3693 3697 3692 3662

3696 3701 3702 3703 3696 3692 3685 3677

Table S2. Frequencies and Grüneisen parameters of vibrational modes from experiments and DFT calculations. Samples are from Isua (Greenland) for talc, Elba (Italy) and Baja California Sud (Mexico) for lizardite, Oeyama (Japan) and Cuba for antigorite, and from Saas-Zermatt zone (Western Alps) for penninite (chlorite). Numbers are fits to the equation given in (Reynard, et al. 2012), figures in parentheses are uncertainties on the last digits.

Talc Isua Talc DFT

n0 g q n0 g q

104.6(10) 8.3(3) 6.2(5) 124.9(11) 6.80(25) 7.9(4)

116.0(8) 2.05(20) -1.8(1.5) 105.7(14) 1.03(17) -5.1(1)

117.0(3) 1.95(5) 1.0(2)

193.0(4) 2.22(8) -0.0(5) 195.8(18) 2.55(22) 3.8(9)

227.4(4) 0.18(8) -3.7(64) 228 0

290.2(5) 0.80(7) 4.8(14) 288.0(4) 1.0(2) 25(6)

302.0(1) 0.67(1) -0.1(1)

331.3(3) 0.48(3) -4.5(9) 332.3(16) 0.04(2) -18(3)

336.9(7) 0.40(3) -3.6(6)

345.9(9) 0.74(7) 3(1)

360.6(3) 0.42(3) -1(1) 365(1) 0.19(3) -7(1)

371.2(8) 0.18(3) -12(2) 374(2) 0.20(5) -7(2)

377.6(7) 0.44(5) -4.2(17) 385.0(3) 0.23(1) -5.1(3)

429.5(5) 0.48(3) -3.5(9) 427.0(2) 0.24(1) -4.2(2)

431.6(8) 0.31(4) -5.5(18) 428.9(5) 0.35(2) -3.1(4)

450.1(5) 0.40(3) -8(1) 454.8(8) 0.41(3) -4.5(5)

466.9(3) 0.43(2) -6.8(6) 471.9(9) 0.41(3) -3.7(6)

504.0(4) 0.41(1) -3.0(2)

515.0(3) 0.38(1) -3.1(2)

676.3(6) 0.01(1) -22(14) 660.1(7) 0.03(1) -6(4)

676.1(9) 0.15(6) 7(8)

675.9(8) 0.17(2) -5.4(18) 661.9(5) 0.20(2) -1.0(7)

675.5(2) 0.35(1) -3.1(5) 667.9(6) 0.24(1) -3.7(5)

787.9(5) 0.19(1) -2.8(4)

795.0(3) 0.17(1) -4.4(2)

904.9(5) 0.22(1) -3.4(3)

1017.9(3) 0.025(2) -9.8(8)

1023.0(4) 0.15(1) -0.7(5)

1045.9(4) 0.19(1) -3.5(3)

1086.0(2) -0.09(1) 0.8(4)

3661.5(1) 0.010(1) -9.9(9)

3677.1(1) 0.018(1) -8.5(6) 3664 -0.01

Table S2. continued

Lizardite Elba Lizardite DFT

(Lizardite BCS32)

n0 g q n0 g q

106 0

123.99(9) 0.47(6) -1(5)

205 1.07 26 208.0(3) 1.18(15) 11(5)

235.0(6) 1.47(22) 1.4(49) 216.0(4) 2.33(14) -1.5(22)

232.7(4) 2.06(15) 7(3)

291.1(2) 0.09(3) -42(12)

305.7(2) 0.32(7) 4(7) 317.0(4) 0.38(11) 3(11)

349.8(4) 0.50(14) 32(12) 350.2(5) 0.20(9) -16(15)

387(1) 0.37(19) -6(16) 382.0(1) 0.56(2) -6(1)

386.4(4) 0.57(7) -3(4)

394.2(3) 0.62(5) 2(2) 394.0(5) 1.4(2) -0.5(40)

401.6(2) 0.33(3) -9(2) 410.0(0) 0.75(1) 75(1)

433(1) 0.2(2) -24(25) 420.0(1) 0.78(2) -4.2(8)

441.0(1) 1.07(2) 4.5(5)

472.7(4) 1.19(8) 11(2) 464.1(3) 0.78(6) -4(3)

479.0(1) 0.62(2) -14.5(9)

525.2(5) 0.71(9) 10(4) 529.1(1) 0.36(2) -13(2)

538.5(4) 0.85(6) 11(3)

624(1) -0.29(24) 31(37) 626 -0.5

647(1) 1.6(2) 223(5)

689.6(2) 0.64(2) -0.1(10) 665.0(2) 0.67(2) 0(1)

692.2(4) 0.53(4) -3.5(24)

714.0(1) 0.46(1) -4.5(8)

736(1) 0.8(2) 20(9)

770.6(9) 0.8(1) 13(6) 778(1) 1.2(1) 13(4)

905.7(8) 0.61(8) -2(5)

1104.1(2) 0.47(2) -1.2(14) 1011.0(2) 0.56(2) 0.7(13)

3650(1) 0.06(2) 10(12)

3667.6(4) 0.03(1) -13(6) 3681(1) -0.23(4) 20(8)

3684.9(5) 0.16(2) 33(5) 3697(1) -0.20(5) 31(12)

3686.8(5) 0.08(1) 9(6)

3703.1(5) 0.09(2) 42(13) 3746.5(7) 0.01(1) -49(34)

3701.8(3) 0.08(1) 16(5)


Table S2. continued

Antigorite Oeyama Antigorite Cu12 Pennitite SZ24

n0 g q n0 g q n0 g q

164.6(3) 0.40(7) -18(4) 161(1) 2.3(5) 1(5)

210.5(3) 0.27(6) -13(5) 203.5(3) 2.38(9) 5.4(10)

206(1) 3.0(5) 14(6)

231(1) 1.1(3) -3(8)

236.8(2) 1.54(6) -1.5(9) 235.0(6) 1.51(16) 1.1(26)

266.9(3) 0.95(10) 2(3) 287.0(3) 0.64(5) -1.9(18)

308.2(3) 0.40(5) -11(3) 306.5(10) 0.14(9) -28(13) 330(1) 0.49(25) -13(18)

347(1) 0.6(2) 0(5) 358.6(4) 0.41(6) -10(3)

366.6(5) 0.73(7) -8.5(22) 374(1) 0.28(10) -10(8)

379.4(2) 0.68(2) -5(1) 377.7(4) 0.60(6) -6.6(20) 389.0(8) 1.05(10) -2.8(23)

410.0(3) 0.63(5) -3.7(25)

432.9(6) 0.15(3) -29(4) 430.4(3) 0.46(4) -6(2)

450.5(11) 0.25(18) -24(26) 444.9(8) 0.92(12) 2(3)

464.3(4) 0.42(5) -11(3) 460.8(7) 0.35(15) 18(13) 464.0(2) 0.61(3) -7.2(9)

469.5(12) 0.1(1) 5(44) 477(1) 0.71(13) -4(4)

531.2(6) 0.65(7) -1(3) 526(1) 0.38(9) -7.5(50) 531.5(10) 0.84(11) 5(3)

550.6(8) 0.26(6) -17(4) 550.6(9) 0.79(9) 0.6(25)

551.8(5) 0.87(6) 1.2(15)

610.9(9) 1.2(4) 72(22)

685.7(4) 0.36(3) -4(2) 686(1) 0.3(1) -7(7) 657.4(15) 1.54(20) 18.5(37)

697.1(5) 0.41(4) -5(2) 696(1) 0.47(10) 1.5(50) 685.1(2) 0.77(2) 1.7(7)

722.6(2) 0.22(2) -5(2) 714(1) 0.35(11) 7(8)

763.9(7) 0.53(6) 5(3)

1048.7(5) 0.44(3) -1.8(15) 1046(1) 0.36(5) -3.7(28) 1059(1) 0.59(7) 7(3)

1091.7(5) 0.56(3) 10(2)

3478(7) -0.1(2) 30(82)

3622.0(5) -0.04(28)

3639.5 -0.20791

3665.2(7) 0.04(1) -5(4)

3666(1) 0.11(2) -6(8) 3669(1) 0.000(7) -64(470) 3615(3) 0.07(3) -15(9)

3685(1) 0.02(1) -17(9) 3688.2(3) 0.016(3) -16(4) 3671.9(8) 0.061 2(5)

3695.7(3) 0.06(1) 7(4) 3685.3(2) 0.046(3) -0.7(14)

3700.5(2) 0.04(1) -8(2) 3698.3(5) 0.03(1) -14(5)

References

Auzende AL, Daniel I, Reynard B, Lemaire C, Guyot F (2004) High-pressure behaviour of serpentine minerals: a Raman spectroscopic study. Phys Chem Minerals 31(5):269-277

Reynard B, Montagnac G, Cardon H (2012) Raman spectroscopy at high pressure and temperature for the study of the Earth's mantle and planetary materials. In: EMU Notes in Mineralogy, Vol 12, vol 12. pp 365-388

1

- -