Figure S1. Data patterns ofinitiation and termination response times of historical psychotic episodes of patient no. 23 as revealed by DCM algorithm.
Table S1. Distributions of CHD and CHD associated risksbetween groups of different performance levels.
Variable / Subjects / ratio of success ≥ 70%(8 men, 13 women) / ratio of success < 70%
(8 men, 6 women)
No. (%) / No. (%)
CHD / All subjects / 15 (71.4) / 4 (28.6)
Men / 10 (76.9) / 0 (00.0)
Women / 5 (62.5) / 4 (50.0)
Smoking / All subjects / 14 (66.7) / 7 (50.0)
Men / 12 (92.3) / 5 (83.3)
Women / 2 (25.0) / 2 (25.0)
Alcohol abuse / All subjects / 8 (38.1) / 2 (14.3)
Men / 8 (61.5) / 1 (16.7)
Women / 0 (0.00) / 1 (12.5)
Cholesterol / All subjects / 3 (14.3) / 1 (7.10)
Men / 2 (15.4) / 0 (0.00)
Women / 1 (12.5) / 1 (12.5)
Hypertension / All subjects / 4 (19.0) / 2 (14.3)
Men / 2 (15.4) / 0 (0.00)
Women / 2 (25.0) / 2 (25.0)
Hyperlipidemia / All subjects / 7 (33.3) / 0 (0.00)
Men / 5 (38.5) / 0 (0.00)
Women / 2 (25.0) / 0 (0.00)
Diabetes mellitus / All subjects / 2 (9.50) / 0 (0.00)
Men / 1 (7.70) / 0 (0.00)
Women / 1 (12.5) / 0 (0.00)
Suggested Readings
Alexandrescu,A. (2001) Modern C++ Design: Generic Programming and Design Patterens Applied. Addision Wesley Professional, Boston.
Dormand,J.R. and Prince,P.J. (1980) A family of embedded Runge–Kutta formulae. J. Comp. Appl. Math., 6, 19–26.
Alexandrescu,A. (2001) Modern C++ Design: Generic Programming and Design Patterens Applied. Addision Wesley Professional, Boston.
Dormand,J.R. and Prince,P.J. (1980) A family of embedded Runge–Kutta formulae. J. Comp. Appl. Math., 6, 19–26.