OH-Initiated Tropospheric Photooxidation of Allyl Acetate (AAC): A Theoretical Study
Haijie Cao, Xin Li, Dandan Han, Shiqing Zhang, Maoxia He*
Environment Research Institute, Shandong University,Jinan 250100, P. R. China
INDEX
FigureS1. The six geometric conformers of AAC. Angles are in degrees.
Figure S2. PESs for the secondary reaction (a for IM1, b for IM2, c for IM4) at the M06-2X/6-31+G(d,p) level of theory, including ZPE. Energiesare in kcalmol-1.
Figure S3. Self-reaction of peroxy radicals. Energiesare in kcalmol-1.
Table S1. Reaction heatsfor primary reaction using different method.
Table S2. NBO results for AAC (NaturalCharge).
Table S3. Imaginary frequencies for all the transition states calculated at M06-2X/6-31+G(d,p) level of theory
Table S4.The individual rate constants (with error values) of the primary reaction of AACwithOH at different temperatures and 1 atm.
Table S5.The total rate constants (with error values)of the primary reaction of AACwithOH at different pressures and different temperatures.
Table S6. Rate constants for further reactionsof alkoxy radicals at 298 K, 1 atm.
Table S7.Platforms information
Structure 1 Structure 2
Structure 3 Structure 4
Structure 5 Structure 6
FigureS1. The six geometric conformers of AAC. Angles are in degrees.
1
(a)
Figure S2. PESs for the secondary reaction (a for IM1, b for IM2, c for IM4) at the M06-2X/6-31+G(d,p) level of theory, including ZPE. Energiesare in kcalmol-1.
(b)
Figure S2. Continued
(c)
Figure S2. Continued
Figure S3. Self-reaction of peroxy radicals. Energiesare in kcalmol-1.
Table S1. Reaction heatsfor primary reaction using different method.Energiesare in kcalmol-1.
Reaction / CBS-QB3 / M06-2Xa / Error / CCSD(T)b / Error / MP2c / Error / B3LYPd / ErrorR+OH→IM1 / -28.06 / -30.30 / -2.24 / -25.42 / 2.64 / -12.30 / 15.76 / -25.19 / 2.87
R+OH→IM2 / -29.76 / -31.80 / -2.04 / -27.41 / 2.35 / -14.82 / 14.94 / -25.59 / 4.17
R+OH→IM3+H2O / -20.23 / -19.97 / 0.26 / -16.83 / 3.40 / -7.00 / 13.23 / -20.51 / -0.28
R+OH→IM4+H2O / -30.58 / -28.93 / 1.65 / -27.20 / 3.38 / -22.20 / 8.38 / -34.76 / -4.18
R+OH→IM5+H2O / -10.11 / -9.64 / 0.47 / -6.67 / 3.44 / 1.28 / 11.39 / -9.70 / 0.41
R+OH→IM6+H2O / -7.34 / -7.22 / 0.12 / -4.56 / 2.78 / 3.09 / 10.43 / -6.18 / 1.16
R+OH→IM7+H2O / -7.04 / -6.79 / 0.25 / -3.92 / 3.12 / 3.46 / 10.5 / -5.83 / 1.21
a atM06-2X/6-311+G(d,p)//M06-2X/6-31+G(d,p) level
b atCCSD(T)/6-311+G(d,p)//M06-2X/6-31+G(d,p) level
cat MP2/6-311+G(3df,2p)//M06-2X /6-31+G(d,p)level
d at B3LYP/6-311+G(3df,2p)//M06-2X /6-31+G(d,p)level
Since experimental thermodynamic data are unavailable, the precision of M06-2X method can be estimateed using CBS-QB3 data as benchmark results.1CBS-QB3 is composite approach which has been documented to be a relatively accurate method.2The deviation between calculated results and experimental data is typically within 1~2 kcalmol-1. 1However, itfailed to provide a reliable description of fewtransition states (TS1 and TS2) and complexes (IM01 and IM04) and thereofe we have onlycompared the reaction heats for primary reaction in this study .In addition, the single-point calculations was also performed with CCSD(T), MP2 and B3LYP method.Table SM1 shows the reaction heats of initial reactions which have been calculated using different methods. According to our results, the mean error is -0.22 kcal mol-1 for M06-2X, 3.02 kcal mol-1for CCSD(T), 12.09 kcal mol-1 for MP2 and 0.77 kcal mol-1 for B3LYP. The errorrange of M06-2X (-2.24~0.12 kcal mol-1) is smaller than CCSD(T) (2.35~3.44 kcal mol-1), MP2 (8.38~15.76 kcal mol-1) and B3LYP (-0.28~4.17 kcal mol-1).Therefore, M06-2X/6-311+G(3df,2p)//M06-2X/6-31+G(d,p) level is a reasonable application based on the computational accuracy and time consumption.
Reference:
1.Wheeler, S. E.; Antonio, M.; Pieniazek, S. N.; Houk, K. N., J Phys Chem A 2009,113 (38), 10376.
2.Montgomery, J. A.; Frisch, M. J.; Ochterski, J. W.; Petersson, G. A., Journal of Chemical Physics 1999,110 (6), 2822.
Table S2. NBO results for AAC (NaturalCharge).
C4 / C5 / H1 / H2 / H3 / H4 / H5 / H6 / H7 / H8VAC / -0.2605 / -0.4512 / 0.2722 / 0.2722 / 0.2718 / 0.2503 / 0.2503 / 0.2442 / 0.2338 / 0.2391
Table S3. Imaginary frequencies for the transition states calculated at M06-2X/6-31+G(d,p) level of theory (unit: cm-1).
TS / imaginaryfrequency / TS / imaginary
frequency / TS / Imaginary
frequency
TS1 / 346.0744 / TS19 / 884.8999 / TS37 / 629.7103
TS2 / 373.1478 / TS20 / 622.4165 / TS38 / 559.5889
TS3 / 1511.3661 / TS21 / 964.0492 / TS39 / 963.5243
TS4 / 859.2746 / TS22 / 400.3161 / TS40 / 369.8786
TS5 / 1156.7926 / TS23 / 355.4730 / TS41 / 384.9511
TS6 / 1286.5805 / TS24 / 1015.197 / TS42 / 1907.9708
TS7 / 1457.5423 / TS25 / 660.9086 / TS43 / 379.9225
TS8 / 1598.6695 / TS26 / 1693.8948 / TS44 / 1514.3216
TS9 / 906.1449 / TS27 / 906.6125 / TS45 / 1011.3338
TS10 / 286.1434 / TS28 / 269.1680 / TS46 / 394.9836
TS11 / 434.0969 / TS29 / 821.1948 / TS47 / 485.1541
TS12 / 1457.2183 / TS30 / 1466.0698
TS13 / 900.9199 / TS31 / 1398.0529
TS14 / 1084.5993 / TS32 / 1063.244
TS15 / 425.8743 / TS33 / 417.4088
TS16 / 698.9293 / TS34 / 190.4675
TS17 / 401.7332 / TS35 / 2202.4528
TS18 / 1865.8892 / TS36 / 1973.068
1
Table S4.The individual rate constants (with error values) of the primary reaction of AACwithOH at different temperatures and 1 atm.
R1 / ±Error / R2 / ±Error / R3 / R4 / R5 / R6 / R7 / abs / tot200 / 3.64E-11 / 1.37E-13 / 5.46E-11 / 1.37E-13 / 8.26E-16 / 2.15E-11 / 4.61E-16 / 1.51E-17 / 2.36E-17 / 2.69E-11 / 1.13E-10
250 / 2.15E-11 / 7.00E-14 / 2.22E-11 / 7.00E-14 / 3.41E-15 / 1.11E-11 / 1.66E-15 / 8.78E-17 / 1.48E-16 / 1.86E-11 / 5.48E-11
298 / 1.56E-11 / 4.36E-14 / 1.13E-11 / 4.36E-14 / 7.54E-15 / 4.75E-12 / 5.15E-15 / 3.78E-16 / 4.84E-16 / 6.39E-12 / 3.17E-11
300 / 1.55E-11 / 4.29E-14 / 1.10E-11 / 4.29E-14 / 6.80E-15 / 4.62E-12 / 5.37E-15 / 3.99E-16 / 5.03E-16 / 6.09E-12 / 3.11E-11
350 / 1.08E-11 / 3.03E-14 / 6.32E-12 / 3.03E-14 / 1.26E-14 / 2.47E-12 / 1.30E-14 / 1.22E-15 / 1.10E-15 / 4.04E-12 / 1.96E-11
400 / 6.39E-12 / 2.33E-14 / 3.39E-12 / 2.33E-14 / 2.02E-14 / 1.58E-12 / 2.60E-14 / 2.84E-15 / 1.68E-15 / 3.12E-12 / 1.14E-11
450 / 3.16E-12 / 1.66E-14 / 1.58E-12 / 1.31E-14 / 2.99E-14 / 1.13E-12 / 4.47E-14 / 5.31E-15 / 2.03E-15 / 2.63E-12 / 5.95E-12
500 / 1.42E-12 / 1.11E-14 / 6.56E-13 / 7.87E-15 / 4.17E-14 / 8.82E-13 / 6.72E-14 / 8.24E-15 / 2.15E-15 / 2.21E-12 / 3.08E-12
Table S5. The total rate constants (with error values)of the primary reaction of AACwithOH at different pressures and different temperatures (unit in cm3 molecule-1 s-1).
P(atm) / 250(K) / ±Error / 298(K) / ±Error / 373(K) / ±Error0.001 / 5.48E-11 / 1.50E-13 / 3.18E-11 / 9.42E-14 / 1.62E-11 / 5.58E-14
0.01 / 5.48E-11 / 1.50E-13 / 3.18E-11 / 9.42E-14 / 1.61E-11 / 5.61E-14
0.1 / 5.48E-11 / 1.50E-13 / 3.18E-11 / 9.42E-14 / 1.62E-11 / 5.58E-14
1 / 5.48E-11 / 1.52E-13 / 3.17E-11 / 9.42E-14 / 1.61E-11 / 5.61E-14
10 / 5.47E-11 / 1.60E-13 / 3.14E-11 / 9.36E-14 / 1.60E-11 / 5.65E-14
100 / 5.27E-11 / 1.64E-13 / 3.05E-11 / 9.29E-14 / 1.55E-11 / 5.71E-14
1000 / 5.18E-11 / 1.66E-13 / 2.98E-11 / 9.35E-14 / 1.47E-11 / 5.71E-14
Table S6. Rate constants for further reactionsof alkoxy radicals at 298 K, 1 atm. Units are s-1 for unimolecular reactions and cm3 molecule-1 s-1 for bimolecular reactions.
Reaction / k298 KIM10+O2→TS8→P1+HO2 / 6.15
IM10→TS9→P1+H / 3.21×10-3
IM10→TS10→P2+IM11 / 9.23×107
IM10→TS15→P5+IM15 / 9.53×104
IM28+O2→TS26→P10+ HO2 / 1.96
IM28→TS27→P10+H / 2.42×10-5
IM28→TS28→P3+ IM29 / 2.74×104
IM40+O2→TS44→P15+ HO2 / 6.71
IM40→TS45→P15+H / 7.12×10-1
IM40→TS46→IM24+P16 / 5.92×10-5
IM40→TS47→P7+ IM41 / 7.66×10-1
IM40→TS50→P9+ IM48a / 7.29×104
Table S7. Platforms information
Machines / PCCPU / Intel core i7 4770k
Processor / 8
Frequency / 3.9GHz
Internal memory / 32G
System / CentOS 6.5
1