S1. Photo of the study site taken from Monte Ragogna (L. Indermaur, July 2006) (a), two characteristic ponds (b,c) in the riparian forest, and (d,e) in the riverbed (active tract). Ponds in the riparian forest contain more predators, are colder, less variable in hydroperiod, and less productive compared to ponds in the riverbed.
1
S2Results from a principal component analysis (PCA). (a) PCA using all factors that were measured (see Table 1 for description of factors); (b) PCA with only factors that were retained for model selection and predictions.(a) The factors group into components reflecting local conditions (pH, Ox, T, Al), hydromorphology (Ar, Hp, De, Cy) and pond distribution (shading). Age describes similar pond characteristics such as Cy. Factors Pr, Ci, lie between the groups local conditions and hydromorphology. Ca is inversely related to hydromorphological characteristics.(b) The factors do not group into different components anymore, except, pond surface area (Ar) and hydroperiod length (Hp). Hence, factors characterize different characteristics of ponds.Shading was consistently higher in the riparian forest than in the active tract. We used factor habitat type (two levels: active tract, riparian forest) instead of factor “shading” in the analyses as it integrates both shading and the spatial distribution of ponds.
1
Indermaur L., Schmidt B.R, Tockner K., Schaub M.
S3Correlation matrix of factors used in candidate models for quantifying among-pond variation in log-body size during the larval period. See Table 1 for description of other factors.
Factors / Y / Sh / Age / Ca / Ci / Ar / De / Hp / Al / T / Ox / Ph / Cy / PrY / 1.000 / -0.302 / ** / 0.328 / ** / -0.328 / ** / -0.241 / ** / 0.113 / -0.043 / -0.043 / -0.044 / 0.328 / ** / 0.102 / 0.153 / * / 0.004 / -0.173 / *
Sh / 1.000 / 0.210 / ** / 0.171 / * / 0.035 / -0.203 / ** / -0.077 / -0.077 / -0.294 / ** / -0.749 / ** / -0.438 / ** / -0.347 / ** / -0.124 / 0.145 / *
Age / 1.000 / -0.341 / ** / -0.183 / ** / 0.267 / ** / 0.384 / ** / 0.384 / ** / -0.002 / -0.250 / ** / -0.044 / -0.069 / 0.060 / 0.243 / **
Ca / 1.000 / 0.104 / -0.464 / ** / -0.378 / ** / -0.378 / ** / -0.051 / -0.144 / * / -0.017 / 0.116 / -0.437 / ** / 0.070
Ci / 1.000 / 0.063 / 0.108 / 0.108 / 0.029 / -0.079 / 0.082 / 0.140 / * / -0.109 / 0.253 / **
Ar / 1.000 / 0.663 / ** / 0.663 / ** / 0.437 / ** / 0.018 / 0.114 / -0.008 / 0.259 / ** / 0.186 / **
De / 1.000 / 1.000 / ** / 0.245 / ** / -0.040 / 0.095 / -0.072 / 0.094 / 0.214 / **
Hp / 1.000 / 0.245 / ** / -0.040 / 0.095 / -0.072 / 0.094 / 0.214 / **
Al / 1.000 / 0.159 / * / 0.554 / ** / 0.385 / ** / 0.152 / * / 0.126
T / 1.000 / 0.316 / ** / 0.316 / ** / 0.093 / -0.281 / **
Ox / 1.000 / 0.860 / ** / -0.134 / 0.187 / **
Ph / 1.000 / -0.406 / ** / 0.241 / **
Cy / 1.000 / -0.556 / **
Pr / 1.000
Y=Log(Mean body size). All factors were standardized prior to calculating Pearson coefficients. * = P-value <0.05; ** = P-value <0.01. Factors in bold were used to formulate candidate models for quantifying among-pond variation in body size during the larval period (see Table 2).
1
Indermaur L., Schmidt B.R, Tockner K., Schaub M.
S4Processed digital photograph used to measure body size (pixels) per individual. Body size was measured separately per species. The inset in the upper left gives the pond number, sampling date, and the millimeter scale that was used to correct for spatial scale when post-processing images.The common toadis widespread in Mediterranean countries, and is an early breeder with a fixed breeding time, and a preference for large permanent waters. However, the species shows considerable behavioral plasticity when breeding in unpredictable environments.
1
Indermaur L., Schmidt B.R, Tockner K., Schaub M.
S5Models used for quantifying among-pond variation in tadpole log-body size during the larval period. See Table 1 for description of factors.
Modelno. / Class / Factors / K / Dev / Res / ΔAICc / Weights / ER
36 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / T / + / Hp / + / Ca*T / 13 / -39.48 / 2.4E-14 / 0.00 / 0.772 / 1.0
28 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / T / + / Hp / + / Ca*T / + / Ci*T / 17 / -45.79 / 1.1E-13 / 3.03 / 0.169 / 4.6
35 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / T / + / Ar / + / Ca*T / 13 / -33.90 / 2.0E-14 / 5.58 / 0.047 / 16.3
27 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / T / + / Ar / + / Ca*T / + / Ci*T / 17 / -39.88 / -2.1E-14 / 8.94 / 0.009 / 87.5
32 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / T / + / Hp / 12 / -24.55 / -3.4E-14 / 12.65 / 0.001 / 5.6E+02
34 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / Ox / + / Hp / + / Ca*Ox / 13 / -25.24 / -4.3E-14 / 14.24 / 0.001 / 1.2E+03
30 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / Ox / + / Hp / 12 / -21.90 / -1.2E-14 / 15.31 / 3.7E-04 / 2.1E+03
24 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / T / + / Hp / 15 / -27.35 / -6.0E-14 / 16.75 / 1.8E-04 / 4.3E+03
3 / B / Ca / + / + / Pr / + / Fi / + / Ca*Pr / + / 10 / -14.99 / 1.5E-14 / 17.74 / 1.1E-04 / 7.1E+03
22 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / Ox / + / Hp / 15 / -24.87 / -6.1E-14 / 19.24 / 5.1E-05 / 1.5E+04
31 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / T / + / Ar / 12 / -17.79 / -3.3E-14 / 19.42 / 4.7E-05 / 1.6E+04
33 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / Ox / + / Ar / + / Ca*Ox / 13 / -19.90 / -8.9E-16 / 19.59 / 4.3E-05 / 1.8E+04
26 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / Ox / + / Hp / + / Ca*Ox / + / Ci*Ox / 17 / -27.98 / 2.3E-14 / 20.84 / 2.3E-05 / 3.4E+04
29 / AB / Ca / + / Pr / + / Fi / + / Ca*Pr / + / Ox / + / Ar / 12 / -16.24 / -9.9E-14 / 20.97 / 2.2E-05 / 3.6E+04
2 / B / Ca / + / Ci / + / Pr / + / Fi / Ca*Pr / + / Ci*Pr / 12 / -16.00 / -2.9E-14 / 21.21 / 1.9E-05 / 4.0E+04
1 / B / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / 13 / -17.89 / 7.1E-15 / 21.60 / 1.6E-05 / 4.9E+04
23 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / T / + / Ar / 15 / -20.57 / 4.5E-14 / 23.53 / 6.0E-06 / 1.3E+05
21 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / Ox / + / Ar / 15 / -19.18 / -5.1E-14 / 24.93 / 3.0E-06 / 2.6E+05
25 / AB / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / + / Ca*Pr / + / Ci*Pr / + / Ox / + / Ar / + / Ca*Ox / + / Ci*Ox / 17 / -22.55 / 2.8E-14 / 26.28 / 1.5E-06 / 5.1E+05
45 / A / (Age and habitat type) / 6 / 8.72 / 2.8E-14 / 32.75 / 6.0E-08 / 1.3E+07
12 / B / Fi / 7 / 8.02 / -3.2E-14 / 34.2 / 2.9E-08 / 2.7E+07
44 / B / Ci / + / Pr / + / Fi / + / Ci*Pr / + / T / + / Hp / + / Ci*T / 13 / -5.08 / -4.4E-14 / 34.41 / 2.6E-08 / 3.0E+07
10 / B / Ci / 7 / 8.44 / -1.2E-14 / 34.61 / 2.4E-08 / 3.3E+07
9 / B / Ca / 7 / 8.63 / 2.2E-14 / 34.80 / 2.1E-08 / 3.6E+07
11 / B / Pr / 7 / 8.63 / 1.9E-14 / 34.81 / 2.1E-08 / 3.6E+07
40 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / T / + / Hp / 12 / -1.24 / -4.4E-15 / 35.97 / 1.2E-08 / 6.5E+07
8 / B / Ca / + / Ci / 8 / 8.35 / 7.1E-15 / 36.69 / 8.3E-09 / 9.3E+07
43 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / T / + / Ar / + / Ci*T / 13 / -2.01 / 5.8E-14 / 37.48 / 5.6E-09 / 1.4E+08
42 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / Ox / + / Hp / + / Ci*Ox / 13 / -1.39 / -1.1E-14 / 38.09 / 4.1E-09 / 1.9E+08
4 / B / Ci / + / Pr / + / Fi / + / Ci*Pr / 10 / 5.85 / 3.6E-15 / 38.58 / 3.2E-09 / 2.4E+08
38 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / Ox / + / Hp / 12 / 1.46 / -3.6E-15 / 38.67 / 3.1E-09 / 2.5E+08
7 / B / Ca / + / Ci / + / Pr / 9 / 8.24 / 7.3E-14 / 38.76 / 3.0E-09 / 2.6E+08
39 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / T / + / Ar / 12 / 1.60 / 7.6E-14 / 38.81 / 2.9E-09 / 2.7E+08
41 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / Ox / + / Ar / + / Ci*Ox / 13 / 0.65 / -5.8E-14 / 40.14 / 1.5E-09 / 5.2E+08
6 / B / Ca / + / Ci / + / Pr / + / Fi / 10 / 7.63 / -6.9E-14 / 40.36 / 1.3E-09 / 5.8E+08
37 / AB / Ci / + / Pr / + / Fi / + / Ci*Pr / + / Ox / + / Ar / 12 / 3.29 / -1.1E-13 / 40.50 / 1.2E-09 / 6.2E+08
5 / B / Ca / + / Ci / + / Pr / + / Fi / + / Ca*Ci / 11 / 7.24 / 1.2E-14 / 42.19 / 5.3E-10 / 1.5E+09
15 / A / T / + / Ar / 7 / 162.52 / 1.9E-14 / 188.70 / 8.2E-42 / 9.4E+40
18 / A / T / 6 / 164.92 / 1.3E-14 / 188.95 / 7.2E-42 / 1.1E+41
19 / A / Ar / 6 / 167.00 / -2.8E-14 / 191.03 / 2.5E-42 / 3.0E+41
16 / A / T / + / Hp / 7 / 164.90 / -5.5E-14 / 191.08 / 2.5E-42 / 3.1E+41
13 / A / Ox / + / Ar / 7 / 166.08 / 2.9E-14 / 192.25 / 1.4E-42 / 5.6E+41
17 / A / Ox / 6 / 168.83 / 5.3E-15 / 192.86 / 1.0E-42 / 7.6E+41
46 / A / (Nullmodel:intercept and random effects) / 4 / 174.10 / -1.3E-14 / 193.9 / 6.0E-43 / 1.3E+42
20 / A / Hp / 6 / 170.31 / -7.0E-14 / 194.35 / 4.8E-43 / 1.6E+42
14 / A / Ox / + / Hp / 7 / 168.82 / -5.5E-14 / 195.00 / 3.5E-43 / 2.2E+42
A=Abiotic factors; B=Biotic factors; AB=Abiotic and biotic factors. The top ranked model with ΔAICc= 0 best approximates the data, and models with ΔAICc ≤ 2 are considered to receive substantial support from the data. K=number of estimated parameters, Dev=-2*log-likelihood, Res=sum of residual deviance, Akaike weights and evidence ratios (ER) are given. ER is the ratio of model weight of a particular model in relation to the top ranked model. When one model receives a weight ≥ 0.9, there is no apparent model selection uncertainty. Model 45, solely included the factors “age” (as mean at metamorphosis=80 days) and “habitat type”. Model 46 included only the intercept as a fixed effect with the nested random effects “pond” and “sampling occasion”. These factors were included in every model to correct for their potential effects on log-body size.
1