Absolute Value Equations
Name: ______Date: ______
Directions: Solve each equation algebraically.
1. 14 = |x| + 3
2. ¾ = |x| - 5
3. |x + 8| = 12
4. -7 = |x - 3| - 10
5. 6.5 = |x + 9| - 14
6. - ¾ |x + 7| - 1 = 3
7. |x + 2| = 3
8. |x + 1| + 5 = 8
9. |3x - 2| + 4 = 6
10. 2|x + 1| - 6 = 4
11. -3|x - 4| + 2 = -7
12. ½|3x + 2| = 7
13. |2x - 3| = 9
14. |5x - 2| + 3 = 11
15. ½|x + 3| + 2 = 3
16. 4 + |x - 8| = 5
Algebraic Properties in Solving Equations
Directions: Name the property that each equation illustrates.
1. 83 + 6 = 6 + 832. 1 • 4y = 4y
3. (8 • 7) • 6 = 8 • (7 • 6)4. 3(a + 2b) = 3a + 6b
5. 7 + (8 + 15) = (7 + 8) + 156. 9 + (-9) = 0
7. 7x + 2y = 2y + 7x8. 15x + 15y = 15(x + y)
9. 10 + 0 = 1010. 5(-3) = (-3)5
Directions: Show the operations (the work) andjustify each step by stating the property of equality used.
11. 5x + 16 = 5112.
5x = 35 ______4y + 8 = -20 ______
x = 7 ______4y = -28 ______
y = -7 ______
13. 4 + 6m + 12 = 14m – 814. 2(k + 3) + 18 = 4k – 10
16 + 6m = 14m – 8 ______2k + 6 + 18 = 4k – 10 ______
16 = 8m – 8 ______2k + 24 = 4k – 10 ______
24 = 8m ______24 = 2k – 10 ______
3 = m ______34 = 2k ______
17 = k ______