1

Pertemuan VII

Fungsi Gamma dan Fungsi Beta

Fungsi Gamma

Euler's gamma function is defined by the integral

Some further values of the Gamma function for small arguments are:

(1/5)=4.5909 , (1/4)=3.6256

(1/3)=2.6789 , (2/5)=2.2182

(3/5)=1.4892 , (2/3)=1.3541

(3/4)=1.2254 , (4/5)=1.1642.

1,0
1,1
1,2
1,3
1,4
1,5
1,6
1,7
1,8
1,9
2,0 / 1,0000
0,9514
0,9182
0,9875
0,8873
0,8862
0,8935
0,9086
0,9314
0,9618
1,0000 /

If x is an integern = 1, 2, 3, ..., then

Γ(n) =

Γ(n+1) = n Γ(n)

Γ (p) Γ (1-p) = 0 < p < 1

= 0 < p < 1

, ,

Contoh

Contoh.

x = 1/9 y2  dx = 2/9 y dy

Contoh. misalkan

x = y3

dx = 3 y2 dy

Contoh.

x = y2

dx = 2y dy

=

=

Contoh

x = y1/3

dx = 1/3 y-2/3 dy

1/3atau Γ(4/3)

Contoh.

x = ½ y1/2

dx = ¼ y-1/2 dy

= =

=

Contoh . misalkan 4 x2 ln 2 = y

x =

Contoh .

x = e-y atau dx = - e-y dy

Fungsi Beta.

Fungsi Beta dinyatakan sebagai berikut :

a . B(m , n) =

b . B(m , n) = B(n , m)

c .

d . ( 0 < p < 1 )

e .

Contoh : Hitung

Contoh : Hitung

x = y2

dx = 2ydy

2 B ( 10 , 6 ) =

=

Contoh : Hitung

x = y1/3

dx = y - 2/3 dy

Contoh : Hitung

dx = 2 dy

Contoh : Hitung

dx = 3 dy

Contoh : Hitung

x = 2y1/2

dx = y-1/2 dy

= 8 B ( ½ , 5/2 ) = 8

Contoh

dx = 4 dy

Contoh : Hitung

x = 10

dx = 5 dy

Contoh Hitung

=

Soal - soal

1. Hitung

2.

3.

4.

5. Hitung

6. Buktikan

7. Carilah

8. Carilah

9. Carilah

10. Carilah

TERIMA KASIH