Physics Equations

Horizontal Vertical

∆x = x2 – x1 ∆y = y2 – y1

vx = ∆x/∆t = (x2 – x1) / (t2 – t1) vy = ∆y/∆t = (y2 – y1) / (t2 – t1)

a = ∆vx/∆t = (v2x – v1x) / (t2 – t1) a = ∆vy/∆t = (v2y – v1y) / (t2 – t1)

vfx = vix + a∆t vfy = viy + g∆t

vf2 = vi2 + 2a∆x vf2 = vi2 + 2a∆y

∆x = ½(vi + vf) ∆t ∆y = ½(vi + vf) ∆t

∆x = vixt + ½ a∆t2 ∆y = viyt + ½ g∆t2

Vi = √{(g∆x) / (2sinθcosθ)}

Sin θ = Opp/Hyp θ = Sin -1(Opp/Hyp)

Cos θ = Ady/Hyp θ = Cos-1(Ady/Hyp)

Tan θ = Opp/Adj θ = Tan-1(Opp/Adj)

(Sin A) / a = (Sin B) / b = (Sin C) / c a2 = b2 + c2 - 2bc Cos A

F = ma W = mg

∑Fx = (make you own equation) = ma or 0 ∑Fy = (make you own equation) = ma or 0

Ff = μFN FS = μSFN FK = μKFN

W = Fd KE = ½ mv2 W = ∆KE ME = PEg + PEelas + KE

P = W/t PEg = mgh ∆KE = ½ mvf2 – ½ mv i2 MEF = MEI

P = Fv PEelas = ½ kx2 v = √(2gh)

ρ = mv mavai + mbvbi = mavaf + mbvbf

I = Ft = ∆ρ = mvf - mvi ½ mavai2 + ½ mbvbi2 = ½ mavaf2 + ½ mbvbf2

∆θ = ∆s/r ω = ∆θ/∆t α = ∆ω/∆t = (ω2 – ω1)/(t2 – t1) vt = r ω at = r α

ac = vt2/r ac = rω2 Fc = (m vt2/r) Fc = mrω2 Fg= G (m1m2/r2)

TF = (9/5)TC + 32 TC = 5/9(TF -32) T = TC + 273.15

∆PE + ∆KE + ∆U = 0 Q = mcp∆T Q = ml

q = 1.6E-19 C Kc = 8.99 E9

F = Kc(q1q2/d2) E = F/q E = Kc(q/d2)

PE = -qEd PE = Kc(q1q2/d)

V = PE/q ∆V = ∆PE/q ∆V = -E∆d ∆V = Kc(q/d)

C = Q/∆V C = Є(A/d)

PE = ½Q/∆V PE = ½Q/∆V2 PE = Q2/C

I = q/t V = IR R = ρ(l/A) P = IV P = I2R P = V2/R

SERIES PARALLEL

I0 = I1 = I2 = I3 = … I0 = I1 + I2 + I3 + …

V0 = V1 + V2 + V3 +… V0 = V1 = V2 = V3 =…

RE = R1 + R2 + R3 +… 1/RE = 1/R1 + 1/R2 + 1/R3 +…

F = βqv F = βIl emf = -N [∆(Aβ cos θ)/t] I = emf/R

emf = -NA (β/t) emf = NAβω V2 = V1(N2/N1)

F = -kx T = sec/cyc f = cyc/sec T = 1/ f f = 1/T

T = 2π√(L/g) T = 2π√(m/k) v = f λ fn = n(V/2L)

I = (P/4πd2) fn = n(V/2L) (n = 1,2,3,4…) fn = n(V/4L) (n = 1,3,5,7…)

c = f λ Brigntness = 1/d2 θ = θ’

(1/p) + (1/q) = (2/R) (1/f) = (1/p) + (1/q) M = h’/h = - q/p

n = c/v ni(sin θi) = nr(sin θr) sinθc = (nr/ni) for ni>nr

d(sinθ) = mλ (m = 0, ±1, ±2, …) d(sinθ) = (m+ ½ )λ (m = 0, ±1, ±2, …)