AlgebraOperations With Integers

Unit One: Assignment #3

Basic

1. 7 + (-5) 2. -3 + -9 3. -12 + 6

4. 3 + 12 5. 8 + -16 6. -13 + 22

7. 8 – 12 8. -8 – 13 9. -3 – (-4)

10. 17 – 9 11. 8 – (-4) 12. -16 – (-6)

13. 3(-4) 14. -2(-6) 15. -7(2)

16. 5(7) 17. 18÷(-6) 18. -12÷(-3)

19. -24÷(6) 20.36÷9 21. (3)4

22.(-2)5 23. (-4)4 24. (5)3

25. 7 – (-4) + 13 – 2 26. -6 + 13 – (-2) – 8 + 4

27. 3(-4) – 8 + 2 28. 18 – 7(-4) – 6

29. 12 + 3(-6) - 24÷(-2) 30. -13 + 2(-4) – 7(-3) – (-6)

Proficient

31. 32.

33. 34.

35.6 – 2(-13 – 4) + 3(5 – 9) 36. 3(2 - 5)2 -6[2 – 3(4)]

37. 38. 18 + 36÷[9 – 3(4)] – 4(-2)

38. 39.

Advanced

40. Is (-2)3,134,567 a positive or negative number? Explain your answer without using a calculator.[5 pts.]

41. Provide a written explanation of how to add any two integers (i.e. two positive, two negative, or one of each). Keep in mind the Six Traits as they apply to mathematical writing.[10 pts.]

42. Use your knowledge and background in operations with signed numbers and roots to explain why it is impossible to find an even root of a negative number. For example, it is impossible to find. Explain why this is true.[5 pts.]

43. Task 1

Read the handout on absolute value

Task 2

Evaluate the following expressions:

1.

2.

3.

4.

5.

Task 3

Absolute values are often used to describe the rules for adding and subtracting integers. For example, the following rule can be use to add any two integers with opposite signs:

If two integers have opposite signs, subtract the lesser absolute value from the greater and attach the sign of the number having the greater absolute value.

Using an example, like -12 + 4, provide a written explanation of how this rule can be used to add two integers with opposite signs. [15 points for the three tasks in #43]
Part I

1. 2 2. -12 3. -6

4. 15 5. -8 6. 9

7. -4 8. -21 9. 1

10. 8 11. 12 12. -10

13. -12 14. 12 15. -14

16. 35 17. -3 18. 4

19. -4 20. 7

Part II

1. 22 2. 5

3. -18 4. 42

5. 6 6. 6

7. 8.

9. 10.

Part III

1. 28 2. 87

3. 4. 14

5.