Chapter 3

Mass Relationships in Chemical Reactions

This chapter uses the concepts of conservation of mass to assist students in gaining an understanding of chemical changes. Upon completion of Chapter 3, your students should be able to:

1)  Write the conversion between grams and atomic mass units (AMU’s).

2)  Calculate the average atomic mass given the mass and natural abundance of each isotope.

3)  Write Avogadro’s number.

4)  Determine the number of objects present in a given number of moles.

5)  Write the conversion of mass, number of moles, and number of atoms (molecules) for an element (compound).

6)  Calculate the molecular mass and molar mass given the molecular formula.

7)  Sketch the main components of a mass spectrometer and describe how they are used..

8)  Compute the percent composition (mass percent) given the chemical formula for an ionic or molecular compound.

9)  Describe the experimental procedure used to determine empirical formulas.

10)  Calculate the molecular formula given the mass of each element present (or mass percent of each element) and the compound’s molar mass.

11)  Balance chemical equations.

12)  Interpret the meaning of chemical equations in terms of molecules, moles, and masses.

13)  Distinguish between products and reactants in a chemical equation.

14)  Predict the products formed by combustion reactions.

15)  Use stoichiometric methods to predict the mass (number of moles) of the products formed given the mass of each reactant (number of moles of each reactant).

16)  Use stoichiometric methods to deduce the limiting reagent, excess reagent, the amount of expected products produced, and the amount of excess reagent left over upon completion of the reaction given the mass (number of moles) of each reactant in the chemical equation.

17)  Use stoichiometric methods to predict the theoretical yield and percent yield given the mass (number of moles) of each reactant and the actual yield of a reaction.

18)  Calculate the mass (number of moles) of each reactant required given the percent yield and the mass (number of moles) of products desired.

Section 3.1 Atomic Mass

Sometimes atomic weight and atomic mass are used interchangeably. However, to decrease confusion and to be consistent, the term atomic weight is not used. Knowledge of atomic mass unit (amu) is especially important for students who plan to enroll in materials science courses where the mass contained in a unit cell in the solid state is often determined. A helpful comparison can be made between calculating the average atomic mass and the semester grade for a course. For example, if 30% of the grade is based on the midterm, 20% on laboratory and 50% on the final and a student earns 80 on the midterm, 90 in laboratory, and a 96 on the final, the student’s grade is (0.30) (80) + (0.20) (90) + (0.5) (96) = 90. A similar calculation can be done for the average atomic mass of C (see pages 80).

Average atomic mass of C = (0.9890) (12.00000 amu) + (0.0110) (13.00335 amu) =12.01 amu

It is important for students to understand how the answer was calculated. For example, if nearly 98% of C has a atomic mass of 12.00000 amu and the other isotopes has a larger atomic mass, then 12.01 amu seems reasonable.

Section 3.2 Avogadro’s Number and Molar Mass of an Element

A fundamental concept is that 1 mole = 6.022 × 1023 entities. One amu is defined as 1/12 the mass of one carbon-12 atom. We define one mole of carbon-12 (6.022 × 1023 carbon-12 atoms) as 12 grams to get a molar mass of 12 g/mol. It is acceptable to say that the molar mass of carbon-12 is 12 grams; however, if 12 g/mol is used consistently, students will find it easier to solve problems using the factor-label method introduced in Chapter 1. A common error students often make is to assume that since carbon-12 is 12 amu and also 12 grams then 1 amu = 1 gram. This error is less likely if we use 12 amu/atom and 12 g/mol since it is obvious that 1 atom is not the same as a mole. For the conversion between amu and grams, it is important to stress that it takes a very large number (Avogadro’s Number, 6.022 × 1023) of amu to make one gram since the amu refers to an atom.

Section 3.3 Molecular Mass

As stated in Section 3.1, atomic mass and atomic weight are often used interchangeably. The same is true for molecular mass and molecular weight. Molecular mass is the correct term and should be used for consistency.

In example 3.7, the factor

4 mol H /1 mole of (NH2)2CO

is used. Since this conversion can be difficult for students to understand, a simpler example may be helpful.. For example:

·  How many oxygen atoms are there in one CO2 molecule? (two oxygen atoms)

·  How many oxygen atoms are there in one dozen CO2 molecules? (two dozen or 24 oxygen atoms)

·  How many oxygen atoms are there in one mole of CO2 molecules? [two moles or 2(6.022×1023) oxygen atoms]

If that is clear, then how many hydrogen atoms are there in one molecule of (NH2)2CO

(four H atoms ) or how many H atoms in one mole of (NH2)2CO [four moles or 4(6.022 × 1023) H atoms] may be easier for students to comprehend.

For substances that exist as atoms :

grams of substance → moles of substance → atoms of element

for substances that exist as molecules or formula units:

grams of subsatance → moles of substance → molecules or formula units → atoms of element

Section 3.4 The Mass Spectrometer

In Figure 3.3, it should be understood that the accelerating plates are negatively charged so that the positive ions will be accelerated toward them. See Section 3.1 of this manual for a discussion on calculating average atomic mass.

Section 3.5 Percent Composition of Compounds

See Section 3.3 for a discussion on how to assist students in understanding the number of moles of an element in one mole of a compound.

In the Chemistry in Action section on page 108, % N by mass in five common fertilizers is shown, which is one factor in choosing the most suitable fertilizer.

Example 3.9 is representative of what is often done in the analysis of products formed by organic synthesis. The organic chemist makes a compound and has its empirical formula determined to give evidence that the product formed was the material desired. It should be noted that division by the smallest subscript forces at least one of the subscripts in the formula to be one. It should be recognized that 1.33 is really 4/3 thus CH1..33 O could be written as C3/3H4/3O3/3 and the multiplication by three (the common denominator) will result in C3H4O3. In a similar fashion, 1.66 would represent 5/3, 1.5 would represent 3/2, etc.

Section 3.6 Experimental Determination of Empirical Formulas

The study of ethanol’s empirical formula assumes that ethanol contains only C, H, and O. If the sample contained something other than C, H, and O (sulfur, for example), then the assumption that the difference between the amount of the starting material (11.5 g ethanol) and the calculated masses of carbon and hydrogen in the ethanol (6.00 g and 1.51 g) to give the mass of oxygen in the sample would not be correct.

In example 3.11, it may be useful to describe the following relationship:

(empirical mass) (integer) = molar mass

where empirical mass is the mass in grams of one mole of the material written as its empirical formula. Once the integer is found, it is used to multiply the subscripts of the empirical formula to obtain the molecular formula. For example, the empirical formula for acetylene is CH (13 g/mol is its empirical mass) while the molar mass of acetylene is 26 g/mol. Therefore

(13 g/mol) (integer) = 26 g/mol

integer = 2

the empirical formula, CH, becomes the molecular formula C2H2. A similar example is benzene with its empirical formula of CH and its molar mass of 78 g/mol:

(13 g/mol) (integer) = 78 g/mol

integer = 6

so the empirical formula CH becomes the molecular formula C6H6 when multiplied by six.

Section 3.7 Chemical Reactions and Chemical Equations

When chemical equations are balanced, it is assumed that equal numbers of atoms of a given element appear as reactants and products. This is a direct result of Dalton’s atomic theory (Section 2.1) which states that chemical reactions involve the combination, separation, or rearrangement of atoms, but not the creation or destruction of atoms. Students learning how to balance chemical equations have a tendency to want to change subscripts in the molecules; therefore, the first bullet on page 85 needs to be heavily stressed. The “logic” used to balance the O2 in the combustion of C2H6 often escapes students. Be sure to explain that 3.5 pairs of O2 are needed to get the desired seven oxygen atoms as products. Note that the convention in this textbook is to use the smallest possible set of whole numbers in the balanced equation.

Section 3.8 Amounts of Reactants and Products

It is interesting to note that H2 is a flammable gas. This point can have great implications in industrial settings that use H2. Figure 3.8 shows three common types of stoichiometric calculations. A fourth calculation may include

number of molecules of reactant moles of reactant

moles of product number of molecules of product

The method of “stringing” factors along as shown in example 3.14 is used by many instructors who have a great deal of experience in solving this type of problem. However, it is common for beginning students to use the logic

if A then B

if B then C

if C then D

in problem solving; therefore, “stringing” out factors can be very confusing to them. It is preferable to use the two methods interchangeably so students can see them both.


Section 3.9 Limiting Reagents

Chemists often refer to limiting reagents. The term “limiting agents” may, confuse students because they have been working with products and reactants, not products and reagents. Be sure to explain that this is a convention which can be understood by substituting the word reactant for reagent. For the reaction:

S(ℓ) + 3F2(g) SF6(g)

it would be better to express this as “sulfur reacting with fluorine” instead of “sulfur burning in an atmosphere of fluorine” because burning is often thought of as combining with O2.

The following example can be used to help students understand the concept of limiting reactants. We find a recipe for “party cakes” that requires one pint of milk and two eggs per cake. We have plenty of flour and sugar, but our refrigerator has only 1.5 gallons of milk and 1.5 dozen eggs. Since we don’t want anyone to go without cake at our party, we need to know how many cakes we can make. [This is then a limiting reactant (reagent) problem.]

We then can only make nine cakes because we are limited by the number of eggs we have. If we make nine cakes, then how much milk will be left?


We started with:

thus, 12 minus 9 results in three pints of milk left over to drink with our cakes.

The logic used to solve this problem is identical to that used in this section to solve chemical limiting reagent problems. Note that we used the logic of starting with the number of cakes made to determine the amount of excess milk left over. Another way to solve for the amount of excess milk would be to do the following:

12 pts-9pts = 3 pts of milk left over

Animation on limiting reagents is a good example to show.

This second method is more in line with the way the author of the textbook solved the limiting reagent problem in Example 3.15.

It should be emphasized that one cannot assume that the reactant with the smallest mass is limiting. For example, if 12.12 grams of H2 are reacted with 16 grams of O2 to form water, which reactant is limiting?

2H2 + O2 2H2O

Thus, even though the mass of H2 was less than the mass of O2, the O2 is the limiting reactant.

Section 3.10 Reaction Yield

As defined, it is possible that the % yield could be greater than 100%. This doesn’t usually happen, but it could as a result of the following:

·  an error in calculation

·  measuring the product wrong

·  contamination of the product (maybe with solvent)

·  the reaction not following the scheme outlined (using the wrong chemical equation)

Therefore, if there is no error in calculation, a percent yield greater than 100% gives valuable insight into what is actually happening in the system.

Electronic Homework Problems

To assign homework, go to: www.aris.mhhe.com Choose Chemistry, 10th edition by Chang.

ARIS homework: 3.5, 3.7, 3.17, 3.26, 3.30, 3.39, 3.47, 3.49, 3.52, 3.59, 3.63, 3.65, 3.75, 3.83, 3.86, 3.99, 3.100.