Geometry

Set6:UnderstandingthePythagoreanTheorem

Instruction

Goal:Toprovideopportunities forstudentstodevelopconceptsandskillsrelatedto understandingthatthePythagoreantheoremisastatementaboutareasofsquares on thesidesofarighttriangle

CommonCoreStandards

Geometry

UnderstandandapplythePythagoreantheorem.

8.G.6.ExplainaproofofthePythagoreantheoremanditsconverse.

8.G.7.ApplythePythagoreantheoremtodetermineunknownsidelengthsinrighttriangles inreal-worldandmathematicalproblemsintwoandthreedimensions.

8.G.8.ApplythePythagoreantheoremtofindthedistancebetweentwopointsina coordinatesystem.

StudentActivitiesOverviewandAnswerKey

Station1

Studentsdrawatriangleanddrawtheareaofeachsidesquared.Thentheytrytofittheareaof thelegssquaredintotheareaofthehypotenusesquared.Theydiscusshowthisillustratesthe Pythagoreantheorem.

Answers: Yes;theareaofthetwolegssquaredisequaltotheareaofthehypotenusesquared

Station2

StudentsusethePythagoreantheoremtoansweraquestionabouttheareaofland.Thentheyusethe Pythagoreantheoremtofinddistanceacrossasquare.ThisallowsstudentstousethePythagorean theoremintwodifferentwaysforthesameproblem.

Answers:5200squarefeet;thePythagoreantheorem;about72feet

Station3

StudentsworkthoughabasicproofofthePythagoreantheorem.Theyuseareatocomeupwith theresult.

Answers:c2;(1⁄2)ab;2ab;c2+2ab

Geometry

Set6:UnderstandingthePythagoreanTheorem

Station4

Instruction

Studentsdeterminetheareaofthesquaresoftwolegsofatriangleandcomparethattothearea ofthesquareofthehypotenuse.Thentheyexplainhowthisdemonstrationisrelated tothe Pythagoreantheorem.

Answers:25;25;theyarethesameareatotal;itshowsthatthetwolegssquaredareequaltothe hypotenusesquared

MaterialsList/Setup

Station1pairofscissors,ruler,andpiecesofpaperforeachgroupmember

Station2 none Station3 none Station4 none

Geometry

Set6:UnderstandingthePythagoreanTheorem

DiscussionGuide

Instruction

Tosupportstudentsinreflectingontheactivitiesandtogathersomeformativeinformationabout studentlearning,usethefollowingpromptstofacilitateaclassdiscussionto“debrief”thestation activities.

Prompts/Questions

1. WhydoyouusesquarestoshowthePythagoreantheoreminaphysicalway?

2. Whatisanexampleofareal-lifesituationwhenyouwouldusethePythagoreantheorem?

3. If theareaofasquarecomingoffalegofarightangleis64sqinchesandthelengthofthe hypotenuseis10 sqinches,whatistheareaofthesquarecomingofftheotherleg?

4. Explainhowyoucould cutthesquaresthatcomeoffthesidesofarighttriangleintosmaller piecestofindPythagoreantriples.

Think,Pair,Share

Havestudentsjot downtheirownresponsestoquestions,thendiscusswithapartner(whowasnot intheirstationgroup),thendiscussasawholeclass.

SuggestedAppropriateResponses

1. InthePythagoreantheorem,thelengthofthesidesaresquaredwhichislikefindingthearea ofasquare.

2. Manypossibilities—findingthedistancebetweentwoplacesifyouknowthehorizontaland verticaldistance

3. 36sqinches

4. Example:3,4,5triangle—cuteachsquareinto4squares,thenyouhavea6,8,10triangle

PossibleMisunderstandings/Mistakes

•Takingthesquare rootoftheamountoflandtheoldestbrotherowns

•Havingtroublecuttingthesquaresofthelegstofitintothesquareofthehypotenuse

•Havingtroublecompletingtheproof,i.e.,notunderstandingallthesteps

Station1

Atthisstation,youwillfindapairofscissors,aruler,andapieceofpaperforeachgroupmember. Eachpersonshouldcompletetheactivityanddiscusshisorherfindingswiththegroup.

Drawarighttriangle.Nowdrawsquaresusingeachsideofthetriangleasonesideofthesquares. Thereshouldbethreesquares.Yourfigurewilllookliketheonebelow.

Cutoutthesquaresthatareconnectedtothetwolegsofthetriangle.

Seeifyoucancutthemupsotheyfitinsidethesquarethatisconnectedtothehypotenuse. Canyou?

ThePythagoreantheoremstatesthata2+b2=c2.Howdoesthisactivitydemonstrate thattheorem?

Station2

Discussandanswerthefollowingquestionsasagroup.

Therearethreebrotherswhoownlandaroundapark.Theparkisintheshapeofarighttriangle. Theparklookslikethetrianglebelow.Theonlylandthebrothersowniswhatisdirectlytouching thepark(inwhite).

N

WE

S

Theyoungestbrothergetsthelandsouthofthepark.Hislandisaperfectsquare,andhehas

1600squarefeetofland.Themiddlebrothergetsthelandwestofthepark.Hislandisalsoaperfect square.Hehas3600squarefeetofland.Theoldest brothergetsthelandthatisalongthelongest sectionofthepark.Hislandisalsoaperfectsquare.

Howmuchlanddoestheoldestbrotherhave?

Explainyourstrategyforsolvingthisproblem.

If theoldestbrotherwalkedthediagonalacrosshisproperty,howfarwouldhewalk?

Station3

Inthisactivity,youwilluseadiagramandtheareaofthediagramtoprovethePythagoreantheorem. Lookatthediagrambelow.Itismadeupoffourtrianglesputtogether.

Forthepurposeofthisproof,lookatthetrianglebelow.

b

a c

Nowlabel thesidesofthefourtrianglesintheoriginaldiagramwitha,b,andc.Worktogether to answerthesequestions.

Whatistheareaofthesmallsquare?

Whatistheareaofoneofthetriangles?

Whatistheareaofthefourtriangles?

Whatistheareaofthelargesquare?

Station4

Atthisstation,youwillexplorethePythagoreantheoremandseehowitrelatestothearea ofsquares.Asagroup,discussandanswerthequestionsbelow.

Inthefigureabove,numbertheboxesinsquaresthatareattachedtothetwolegsoftherighttriangle

(1,2,3,etc.).

Howmanytotalsquaresarethere?

Numbertheboxesinthesquarethatisattachedtothehypotenuse.

Howmanytotalsquaresarethere?

Whatdoyounotice?

HowdoesthisrepresentthePythagoreantheorem?