Supplementary Materials

A Computational Investigation of Monosubstituted Boroxine(RH2B3O3): Structure and Formation

Niny Z. Rao1, Joseph D. Larkin2, Charles W. Bock1* and

1 Department of Chemistry and Biochemistry, College of Science, Health and the Liberal Arts, Philadelphia University, 4201 Henry Avenue, Philadelphia, PA 19144

2 Chemistry Department, EckerdCollege, St. Petersburg, FL33711

*Corresponding Author

Niny Z. Rao, Ph.D.

College of Science, Health and the Liberal Arts

School House Lane and Henry Avenue

Philadelphia, PA19144

Telephone: (215) 951-0906

E-mail:

Table 1S. Electronegativities and Hammet Constants for the Substituents in this Investigation.

Pauling
Atomic Electro-negativity / Wellsa,i Group Electro-negativity / Boydd,i
Group Electro-negativity / Mullaye Group Electro-negativity / Inamotog,h
Group Electro-negativity / Marriotf,i Group Electro-negativity / Hammetb.c
σI σR
R
H / 2.20 / 2.28 / (2.08) / 2.00[2.18] / 0.000 / 0.03 0.00
Second Period
Li / 0.98 / 0.97 / 1.00 / 1.01 / 1.15 / -0.177
HBe / 1.57 / 1.47 / 1.65 / [1.49] / -0.087
H2B / 2.04 / 1.93 / 2.00 / [1.98] / -0.041
H3C / 2.55 / 2.30 / 2.56 / 2.17(2.32) / 2.14[2.47] / +0.165 / +0.01 -0.18
H2N / 3.04 / 3.35 / 3.10 / 2.39(3.15) / 2.47[2.99] / +0.332 / +0.08 -0.74
HO / 3.44 / 3.70 / 3.64 / 2.85(3.97) / 2.79[3.49] / +0.434 / +0.33 -0.70
F / 3.98 / 3.95 / 4.00 / 4.00(4.73) / 3.10[3.21] / +0.517 / +0.45 -0.39
Third Period
Na / 0.93
HMg / 1.31 / 1.33 / 1.53
H2Al / 1.61 / 1.62
H3Si / 1.90 / 2.2 / 1.91 / 2.02(1.97) / +0.06 +0.04
H2P / 2.19 / 2.8 / 2.17 / [2.19] / +0.09 -0.04
HS / 2.58 / 2.63 / 2.27(2.42) / 2.17[2.62] / +0.30 -0.15
Cl / 3.16 / 3.35 / 3.05 / 3.07 / 2.37 / +0.245 / +0.42 -0.19
Electron-Donating Substituents
O- / -0.26 -(0.55)
COO- / -0.10 +0.10
MeCH2 / 2.56 / (2.35) / 2.15[2.48] / 0.00 -0.15
Electron-Withdrawing Substituents
NH3+ / +0.92 -0.32
NO2 / 3.4 / 3.25 / 4.23(4.08) / 2.75[3.42] / +0.65 +0.13
CN / 3.3 / 2.69 / 3.69(3.46) / 2.61[3.21] / +0.51 +0.15
CF3 / 3.35 / 3.46(3.10) / 2.47[2.98] / +0.38 +0.16
CO2H / 2.85 / 2.66 / 3.09(3.15) / 2.36[2.82] / +0.34 +0.11
CHO / 2.60 / (2.89) / 2.39[2.87] / +0.33 +0.09
OCH3 / 3.7 / 3.70 / 2.42(4.03) / 2.82 / +0.29 -0.56

Footnotes for Table 1S

a Wells PR: Group Electronegativities. Prog. Phys. Org. Chem.1968, 6:111-145

b Hansch C, Leo A, Taft, RW: ASurvey of Hammett Constants and Resonance and Field Parameters. Chem. Rev. 1991, 91:165-195

c

d Boyd RJ, EdgmmbeKE: Atomic and Group Electronegativities from Electron Density Distributions of Molecules. J. Am. Chem. Soc.1988, 110:4182-4186

e Mullay J: Calculation of Group Electronegativity.J. Am. Chem. Soc.1985,107:7271-7275

f Marriot S, Reynolds WF, Taft RW, Topsom RD: Substituent Electronegativity Parameters.J. Org. Chem.1984,49:959-965

g InamotoN,MasudaS: Substituent effects on C-13 chemical shifts in aliphatic and aromatic series. Proposal of new inductive substituent parameters (ι:iota) and the application.Tetrahedron Lett.1977,3287-3290.;Inamoto N,MasudaS,Tori K, YoshimuraY:Effects of fixed substituents upon substituent chemical shifts of the C-1 atom in m- and p-disubstituted benzenes. Correlations with inductive substituent parameter (ι).Tetrahedron Lett.1978,4547-4550.Theι scale isclaimed to be a substituent electronegativity scale

h Marriot S, Reynolds WF, Taft RW, Topsom RD: Substituent Electronegativity Parameters.J. Org. Chem. 1984, 49:959-965

i Reed LH, Allen LC: Bond Polarity Index: Application to Group Electronegativity.J. Phys. Chem. 1992, 96:157-164.

Table 2S. Experimental/Computational Heats of Formation for Boronic Acids, Boranes, Boroxines, Water, and Atoms.

Molecule / Hf(298 K)
(kcal/mol) / S
(cal/mol-K) / S(MP2/aug-pVDZ)
(cal/mol-K)
A. Boronic Acids
H–B(OH)2 / -153.11c
-153.09d
-153.8±2.0e
-154.6±1.5h
-154.1j
-154.0±2.0o / 61.399o / 61.233
HO-B(OH)2 / -237.2±0.6b
-236.98d
-239.8h
-239.2j
-237.6m
-240.0±0.6o
-236.3q / 70.562b
64.080o / 66.890
F–B(OH)2 / -249.7f
-249.62g
-250.6j
-249.21d
-250.9±5.0o
-249.8±2.5u / 65.524o / 66.107
Cl–B(OH)2 / -192.5±5.0o / 68.212o / 68.698
B. Boroxines
H3B3O3 / -291.0±2.0a,b
-290.02d
-287.7±5.0o
-291.0±10.0t / 69.766b
68.361o / 71.099
FH2B3O3 / -382.000b
-382.81d / 75.246b / 75.508
ClH2B3O3 / -314.5±4.0a / 78.342
C. H2O / -57.799±0.0096b
-57.798±0.01t / 45.124±0.0024b / 45.120
D. Atomsw
H / 52.103±0.001b / 27.4180±0.0005b,n
Li / 38.074±0.24b,n / 33.1697±0.0024b,n
Be / 77.438±1.2b
77.4±0.6p / 32.5705±0.0007b
B / 136.3±0.2p,x
133.8±3.0t / 36.6721±0.0036b,n
C / 171.29±0.11b / 37.7868±0.0007b,n
N / 112.97±0.096b / 36.6398±0.0007b,n
O / 59.555±0.024b / 38.4940±0.0007b,n
F / 18.97±0.072b / 37.9424±0.001b,n
Cl / 28.992±0.002b / 39.4814±0.001b,n

Footnotes for Table 2S.

a Porter RF, GuptaSK: Further observations of the stabilization and reactivities of gaseous boroxines.J Phys Chem 1964, 68:280-289

b Chase MW Jr. NIST-JANAF Thermochemical Tables, Fourth Ed. J Phys Chem Ref Data Monograph 1998, 9:1-1951

c Matteson DS: Stereodirected Synthesis with Organoboranes.Berlin: Springer; 1995

d Guest MF, Pedley, JB, Horn M: Analysis by computer of thermochemical data on boron compounds.J Chem Thermodynamics 1969, 1:345-352

e Porter RF, Gupta SK: Heats of Formation of Gaseous H2BOH and HB(OH)2.J Phys Chem 1964, 68:2732-2733

f Sanderson RT: Chemical Bonds and Bond Energy. London: Academic Press; 1971; Sanderson RT: The Interrelationship of Bond Dissociation Energies and Contributing Bond Energies.J Am Chem Soc 1975, 75: 1367-1372

g Elkaim JC, Simonne P, Riess, JG: Empirical prediction of heats of formation and of redistribution of boron compounds using nonbonded interaction energy terms from redistribution equilibriums.J Phys Chem 1980, 84:354-360

h Grant DJ, Dixon DA: Heats of Formation and Bond Energies of the H(3-n)BXn Compounds for (X = F, Br, I, NH2, OH, and SH).J. Phys. Chem. A, 2009, 113:777-787

iFisher HD, Kiel J., Cane, A: Infrared Spectra and Themodynamic Properties of Trifluoroboroxine, (FBO)3. Hughes Tool Company--Aircraft Division 1961 Final Report

jDuan X, Linder DP, Page M, Soto MR: Structures and thermochemistry of BHlFm(OH)n and several XYBO compounds at the G-2 level of theory.J. Mol. Struct. (Theochem) 1999, 465:231-242

k Schlegel HB, Harris SJ: Thermochemistry of BHmCln Calculated at the G-2 Level of Theory.J. Phys. Chem., 1994, 98:11178-11180

l Feller D, Dixon DA: Heats of Formation of Simple Boron Compounds.J. Phys. Chem. A, 1998, 102:7053-7059

m Holbrook JB, Smith BC, Housecroft CE, Wade K: Bond-Order Dependent Enthalpy Terms in Simple Compounds of Boron.Polyhedron, 1982, 1: 701-706

n Cox JD, Wagman DD, Medvedev VA: CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp.: New York 1989

oGurvich LV, Veyts IV, Alcock CB: Thermodynamic Properties of Individual Substances, Vol 3 (Parts 1 and 2) ElementsB, Al, Ga, In, Tl, Be, Mg, Ca, Sr, and Ba and Their Compounds, CRC Press 1994

p Kartan A, Martin JML: Heats of Formation of Beryllium, Boron, Aluminum, and Silicon Rexamined by Means of W4 Theory. J. Phys. Chem. A, 2007, 111: 5936-5944

q Stefani D, Pashalidis, I, Nicolaides AV: A computational study of the conformations of the boric acid (B(OH)3), its conjugate base ((HO)2BO-) and borate anion (B(OH)4-).J. Mol. Struct. (Theochem), 2008, 853:33-38

r Rocket Power, Inc., QPR, Thermodynamics of Reactions Involving Light Metal Oxides, Contract DA 04-495-ORD-1987, Nov. 9-Feb. 9, 1961

sAeronutronic, OPR, Nord 17980, Task 3, Dec. 15, 1980; Esso R and E, QPR, Research on Advanced Solid Propellants, Contract DA 30-069-ORD-2487, Mar. 1-June 30, 1959

t Active Thermochemical Tables (ATcT); Ruscic B, Pinson RE, Morton ML, von Laszevski G, Bittner SJ, Nijsure SG, Amin KA, Minkoff M, Wagner AF: Introduction to Active Thermochemical Tables: Several “Key” Enthalpies of Formation Revisited. J. Phys. Chem. A, 2004, 108: 9979-9997; Thermochemical Tables (ATcT) ver. 1.25 using the Core (Argonne) Thermochemical Network ver. 1.048 where available

u Porter RF, Bidinosti DB, Watterson VF,Mass Spectrometric Study of the Reactions of BF3(g) with BCl3(g), B(OH)3(g), and B2O3(l).J. Chem. Phys. 1962, 36: 2104-2109

v Farber MJ,Heat of Formation and Entropy of the Trimer of Boron Oxyfluoride.J.Chem. Phys. 1962, 36:661-665

w The ATcT heats of formation for the atoms are: H, 52.103; B, 133.843; C, 171.288; N, 112.973; O, 59.554; F, 18.975; Cl, 28.992 kcal/mol

x This value was used in computing the G3 heats of formation

1