251descr2ex1 1/15/03 (Open this document in 'Outline' view!)
Running Downing and Clark, pg. 37, Application 7 using Minitab
Step1: In the Data part of the Minitab screen, label the columns in the part of the spreadsheet above the regular column locations.
Column 1 is "f", Column 2 is "x", C3 is "fx", (C4 is "fxsq" C5 is "fxcu", C6 is "x^", C7 is "fx^ ", C8 is "fx^sq", C9 is "fx^cu", C10 is "class".) Fill rows 1-12 in C10 with the range of the classes to serve as row labels.
There are 2 ways to go from here
The Hard Way.
Go to PROGRAMSon the website. Click on 'Programs for grouped data computation.' Print out the three programs 'grp', 'grpv', and 'grps'
In the session window, go through these programs in sequence line by line.
The Easy Way
Step 1: In the session part of the Minitab screen set up the following:
Store 'grp'
#grp
end
Store 'grpv'
#grpv
end
Store 'grps'
#grps
end
This will set up three blank command files. Figure out where they are on the computer.
Step 2: Go to PROGRAMSon the website. Click on 'Programs for grouped data computation.' Find the three programs 'grp', 'grpv', and 'grps'. Use Word to edit the three blank command files so that the material between the #title line and the word end is the same as in the programs on the website. Don’t worry about statements by the program that you should save this as a .doc file. It has to be .mtb!
Step 3: Go back into the Command part of Minitab. With the 3 columns of data that you have prepared you want to do the three commands below.
Execute 'grp'
Execute 'grpv'
Execute 'grps'
This probably won't work because Minitab can't find the command files. To find the command files use the "Files" pull-down menu. Pick "Other Files" and then "Run an Exec." Click on "Select File" and find 'grp'. It should run and produce the tables in the output stream. You should now be able to do the other two "Execute" instructions. Print out your output. If you have any trouble with any of the Command files use the Command "echo" before you execute them. This will give you a line by line report of what happened.
If you do this right, you will get the output on the next few pages.
Worksheet size: 100000 cells
MTB > echo Sets Minitab to print out contents of execs.
MTB > RETR 'C:\DOCUME~1\RBOVE\MYDOCU~1\DRIVED~1\MINITAB\DC037-07.MTW'.
Retrieving worksheet from file:
Data was stored as dc037-07 with frequencies in column 1, midpoints in column 2 and labels in column 10.
C:\DOCUME~1\RBOVE\MYDOCU~1\DRIVED~1\MINITAB\DC037-07.MTW
Worksheet was saved on 1/15/2003
MTB > execute 'grp'
Executing from file: grp.MTB
MTB > #grp
MTB > #grp.mtb
MTB > let c3=c1*c2
MTB > let c4=c3*c2
MTB > let c5=c4*c2
MTB > name k1 = 'n'
MTB > name k2 = 'mean'
MTB > name k3 = 'Sfx'
MTB > name k4 = 'Sfx2'
MTB > name k5 = 'Sfx3'
MTB > name k7 = 'Sfx^'
MTB > name k8 = 'Sfx^2'
MTB > name k9 = 'Sfx^3'
MTB > let k1=sum(c1)
MTB > let k3=sum(c3)
MTB > let k4=sum(c4)
MTB > let k5=sum(c5)
MTB > let k2=k3/k1
MTB > print c10, c1-c5
Data Display
Row C10 f x C3 C4 C5
1 0-10 122 5 610 3050 15250
2 10-20 180 15 2700 40500 607500
3 20-30 256 25 6400 160000 4000000
4 30-40 350 35 12250 428750 15006250
5 40-50 311 45 13995 629775 28339876
6 50-60 278 55 15290 840950 46252248
7 60-70 250 65 16250 1056250 68656248
8 70-80 211 75 15825 1186875 89015624
9 80-90 180 85 15300 1300500 110542496
10 90-100 175 95 16625 1579375 150040624
11 100-110 143 105 15015 1576575 165540368
12 110-120 120 115 13800 1587000 182504992
13 120-130 106 125 13250 1656250 207031248
14 130-140 99 135 13365 1804275 243577120
15 140-150 97 145 14065 2039425 295716640
16 150-160 75 155 11625 1801875 279290624
MTB > print k1-k5
Data Display
n 2953.00
mean 66.4968
Sfx 196365
Sfx2 17691424
Sfx3 1886137088
MTB > let c6=c2-k2
MTB > let c7=c1*c6
MTB > let c8=c7*c6
MTB > let c9=c8*c6
MTB > let k7 =sum(c7)
MTB > let k8 = sum(c8)
MTB > let k9 = sum(c9)
MTB > print c10, c1, c2, c3, c6-c9
The display below and the one on the previous page can be interpreted using the table at right.
Contents of Columns.
Location / ContentsC1 /
C2 /
C3 /
C4 /
C5 /
C6 /
C7 /
C8 /
C9 /
C10 / Row labels
Data Display
Row C10 f x C3 C6 C7 C8 C9
1 0-10 122 5 610 -61.4968 -7502.6 461386 -28373766
2 10-20 180 15 2700 -51.4968 -9269.4 477345 -24581748
3 20-30 256 25 6400 -41.4968 -10623.2 440828 -18292926
4 30-40 350 35 12250 -31.4968 -11023.9 347217 -10936202
5 40-50 311 45 13995 -21.4968 -6685.5 143717 -3089446
6 50-60 278 55 15290 -11.4968 -3196.1 36745 -422448
7 60-70 250 65 16250 -1.4968 -374.2 560 -838
8 70-80 211 75 15825 8.5032 1794.2 15256 129728
9 80-90 180 85 15300 18.5032 3330.6 61626 1140288
10 90-100 175 95 16625 28.5032 4988.1 142176 4052470
11 100-110 143 105 15015 38.5032 5506.0 211997 8162575
12 110-120 120 115 13800 48.5032 5820.4 282307 13692821
13 120-130 106 125 13250 58.5032 6201.3 362798 21224876
14 130-140 99 135 13365 68.5032 6781.8 464576 31824982
15 140-150 97 145 14065 78.5032 7614.8 597787 46928228
16 150-160 75 155 11625 88.5032 6637.7 587461 51992236
MTB > print k7-k9
Data Display
Sfx^ 0.00341797
Sfx^2 4633784
Sfx^3 93450832
MTB > end
MTB > execute 'grpv'
Executing from file: grpv.MTB
MTB > #grpv
MTB > let k6=k1-1
MTB > name k10 = 'var1'
MTB > name k11 = 'var2'
MTB > name k17 = 'stdev'
MTB > let k10=k8/k6
MTB > let k11=k1*k2*k2
MTB > let k11=k4-k11
MTB > let k11=k11/k6
MTB > let k17=sqrt(k11)
MTB > end
MTB > execute 'grps'
Executing from file: grps.MTB
MTB > #grps
MTB > name k14 = 'k31'
MTB > name k16 = 'k32'
MTB > name k18 = 'g11'
MTB > name k19 = 'g12'
MTB > let k12=k6-1
MTB > let k13=k1/k6
MTB > let k13=k13/k12
MTB > let k14=k13*k9
MTB > let k15=2*k1*k2*k2*k2
MTB > let k16=3*k2*k4
MTB > let k15=k5-k16+k15
MTB > let k16=k13*k15
MTB > let k18=k16/k11
MTB > let k18=k18/k17
MTB > let k19=k14/k11
MTB > let k19=k19/k17
MTB > print k1-k19
Data Display
n 2953.00
mean 66.4968
Sfx 196365
Sfx2 17691424
Sfx3 1886137088
K6 2952.00
Sfx^ 0.00341797
Sfx^2 4633784
Sfx^3 93450832
var1 1569.71
var2 1569.71
K12 2951.00
K13 0.000338983
k31 31678.2
K15 93450880
k32 31678.3
stdev 39.6196
g11 0.509369
g12 0.509368
MTB > end
MTB >
These items are the contents of K1 through K19 and can be interpreted using the table at right. The tables above appear next correctly labeled with sums from K1 through K19.
Contents of Constants.
Location / ContentsK1 /
K2 /
K3 /
K4 /
K5 /
K6 /
K7 /
K8 /
K9 /
K10 /
K11 /
K12 /
K13 /
K14 /
K15 /
K16 /
K17 /
K18 /
K19 /
Row group
1 0-10 122 5 610 3050 15250
2 10-20 180 15 2700 40500 607500
3 20-30 256 25 6400 160000 4000000
4 30-40 350 35 12250 428750 15006250
5 40-50 311 45 13995 629775 28339876
6 50-60 278 55 15290 840950 46252248
7 60-70 250 65 16250 1056250 68656248
8 70-80 211 75 15825 1186875 89015624
9 80-90 180 85 15300 1300500 110542496
10 90-100 175 95 16625 1579375 150040624
11 100-110 143 105 15015 1576575 165540368
12 110-120 120 115 13800 1587000 182504992
13 120-130 106 125 13250 1656250 207031248
14 130-140 99 135 13365 1804275 243577120
15 140-150 97 145 14065 2039425 295716640
16 150-160 75 155 11625 1801875 279290624
Total 2953 196365 17691424 1886137088
Row group
1 0-10 122 5 610 -61.4968 -7502.6 461386 -28373766
2 10-20 180 15 2700 -51.4968 -9269.4 477345 -24581748
3 20-30 256 25 6400 -41.4968 -10623.2 440828 -18292926
4 30-40 350 35 12250 -31.4968 -11023.9 347217 -10936202
5 40-50 311 45 13995 -21.4968 -6685.5 143717 -3089446
6 50-60 278 55 15290 -11.4968 -3196.1 36745 -422448
7 60-70 250 65 16250 -1.4968 -374.2 560 -838
8 70-80 211 75 15825 8.5032 1794.2 15256 129728
9 80-90 180 85 15300 18.5032 3330.6 61626 1140288
10 90-100 175 95 16625 28.5032 4988.1 142176 4052470
11 100-110 143 105 15015 38.5032 5506.0 211997 8162575
12 110-120 120 115 13800 48.5032 5820.4 282307 13692821
13 120-130 106 125 13250 58.5032 6201.3 362798 21224876
14 130-140 99 135 13365 68.5032 6781.8 464576 31824982
15 140-150 97 145 14065 78.5032 7614.8 597787 46928228
16 150-160 75 155 11625 88.5032 6637.7 587461 51992236
Total 2953 196365 0.0 4633784 93450832
From K1 – K19 we can also write the following:
=2953.00, =66.4968, =196365, =17691424, =1886137088, =2952.00, =0.00341797 (zero, except for a rounding error), =4633784, =93450832, using a definitional formula=1569.71, using a computational formula=1569.71, =2951.00,=0.000338983, using a definitional formula =31678.2, an intermediate step in the computational formula for gives =93450880, using a computational formula =31678.3, =39.6196, using a computational formula=0.509369and using a definitional formula =0.509368.