1
electronic supplementary material
soils, sec 4 • ecotoxicology • research article
Role of soil physico-chemical characteristics on the present state of arsenic and its adsorption in alluvial soils of two agri-intensive region of Bathinda, Punjab, India
Ravishankar Kumar1 • Rabindra Kumar1 • Sunil Mittal • Meenu Arora2 • J. Nagendra Babu1
Received: 9 April 2015 / Accepted: 5 September 2015
© Springer-Verlag Berlin Heidelberg 2015
Responsible editor: Dong-Mei Zhou
1Centre for Environmental Science and Technology, Central University of Punjab, Bathinda – 151 001, Punjab, India
2Department of Chemistry, Multani Mal Modi College, Patiala – 147 001, Punjab, India
J. Nagendra Babu
1
S1. Physico-Chemico Parameters of soil sample
S1.1 Soil samples of Talwandi Sabo region
Village Name / Sample ID / pH / ECdS m-1 / Bulk Density
g cm-3 / OC
mg kg-1 / OM
mg kg-1 / TP
mg kg-1 / Ava P
mg kg-1 / Fe
mg kg-1 / Mn
mg kg-1 / As
mg kg-1
Chatewala / PBT 2 / 8.74 / 0.43 / 1.276 / 6500 / 11200 / 787.57 / 2 / 20376 / 284.5 / 4.49
Jeewansinghwala / PBT 3 / 9.61 / 0.467 / 1.278 / 5600 / 9600 / 744.32 / 11.73 / 12856 / 198.16 / 3.17
Bagair / PBT 4 / 8.37 / 0.633 / 1.22 / 5500 / 9300 / 641.62 / 26.32 / 25500 / 162.44 / 2.98
Burg Seema / PBT 5 / 8.68 / 0.776 / 1.296 / 6800 / 11700 / 830.81 / 14.43 / 18776 / 230.34 / 3.46
Jodhpur Parker / PBT 6 / 8.37 / 0.527 / 1.069 / 4000 / 6900 / 760.54 / 27.41 / 14452 / 185.7 / 2.32
Lelewala / PBT 7 / 8.55 / 0.672 / 1.209 / 5000 / 8600 / 955.13 / 5.24 / 18400 / 247.1 / 3.7
Sheikhpura / PBT 8 / 8.71 / 0.423 / 1.125 / 2600 / 4500 / 733.51 / 11.73 / 17084 / 212.32 / 3.34
Talwandi Sabo / PBT 11 / 8.33 / 0.243 / 1.233 / 4400 / 7600 / 879.46 / 22.54 / 33160 / 257.68 / 5.29
Bhie Bander / PBT 12 / 9.24 / 0.43 / 1.113 / 3000 / 5200 / 847.03 / 13.9 / 26204 / 266.28 / 3.11
Jajjal / PBT 13 / 8.66 / 0.677 / 1.257 / 4200 / 7200 / 917.3 / 36.05 / 28744 / 187.58 / 3.22
Malkana / PBT 14 / 8.44 / 0.388 / 1.17 / 6400 / 11000 / 1284.86 / 11.85 / 14156 / 194.18 / 2.89
Giana / PBT 15 / 8.85 / 0.582 / 1.224 / 2400 / 4100 / 484.86 / 6.99 / 24324 / 190 / 3.11
Gatwali / PBT 16 / 8.68 / 0.076 / 1.049 / 7600 / 13100 / 847.03 / 29.57 / 24136 / 293.72 / 4.09
Yogiwala / PBT 17 / 9.09 / 0.144 / 1.17 / 4800 / 8300 / 798.38 / 3.08 / 16288 / 212.32 / 3.37
Rampura Cachi / PBT 18 / 9 / 0.43 / 1.24 / 3400 / 5800 / 468.65 / 8.49 / 15580 / 189.68 / 4.18
Singhpura / PBT 19 / 8.77 / 0.251 / 1.162 / 2600 / 4500 / 695.68 / 23.62 / 34288 / 218.38 / 4.38
Gehlewala / PBT 20 / 9.02 / 0.209 / 1.245 / 3400 / 5800 / 1565.95 / 44.7 / 24136 / 200.06 / 3.5
Kaurena / PBT2 1 / 8.6 / 0.462 / 1.153 / 2600 / 4500 / 547.57 / 25.24 / 18260 / 168.1 / 2.39
Mirziana / PBT 22 / 8.39 / 0.161 / 1.03 / 7800 / 13400 / 971.35 / 51.73 / 10412 / 223.62 / ND
Lehri / PBT 23 / 8.82 / 0.665 / 1.017 / 4800 / 8300 / 1609.19 / 28.49 / 16672 / 481.08 / 6.55
Singo / PBT 24 / 8.42 / 0.134 / 1.229 / 2800 / 4800 / 474.05 / 19.84 / 14036 / 181.03 / 2.28
Behniwal / PBT 25 / 8.52 / 0.316 / 1.245 / 4400 / 7600 / 517.3 / 18.76 / 35416 / 181.08 / 2.92
Bannawala / PBT 26 / 9 / 0.465 / 1.224 / 1200 / 2100 / 382.16 / 18.22 / 19576 / 52.1 / 2.77
Talwandi Aklia / PBT 27 / 8.36 / 0.246 / 1.105 / 10800 / 18600 / 738.92 / 40.92 / 36544 / ND / 2.9
Karamgarh / PBT 28 / 8.48 / 0.442 / 0.986 / 7600 / 13100 / 620 / 23.62 / 17368 / 21.92 / 5.45
Doliwali / PBT 29 / 7.92 / 0.321 / 1.088 / 5600 / 9600 / 711.89 / 27.7 / 19528 / 55.46 / 2.6
Kamalu / PBT 30 / 8.44 / 0.267 / 1.165 / 7400 / 12800 / 592.97 / 5.78 / 43360 / ND / 3.22
Dhingarh / PBT 31 / 8.83 / 0.446 / 1.155 / 6400 / 11000 / 657.84 / 5.78 / 38380 / 8.62 / 2.76
Ram Tirah Jaga / PBT 32 / 8.59 / 0.537 / 1.213 / 5200 / 8900 / 382.16 / 11.19 / 29212 / ND / 3.64
S1.2 Soil Samples from Goniana region
Sample ID / pH / ECdS m-1 / BD
g cm-3 / OC
mg kg-1 / OM
mg kg-1 / TP
mg kg-1 / Ava P
mg kg-1 / Fe
mg kg-1 / Mn
mg kg-1 / As
mg kg-1
Kot Sahab Wale (Ablu) / PBT 33 / 9.4 / 0.71 / 1.248 / 8900 / 15500 / 728.1 / 25.36 / 16024 / 232.38 / 5.79
Mehma Sawai / PBT34 / 9.17 / 0.419 / 1.085 / 4000 / 6900 / 765.95 / 17.86 / 12100 / 168.48 / 4.44
Mehma Sarja / PBT 35 / 8.82 / 0.47 / 1.176 / 7000 / 12000 / 636.22 / 8.84 / 15044 / 207.32 / 5.07
Ablu / PBT 36 / 8.75 / 0.797 / 1.182 / 4000 / 6900 / 506.49 / 4.03 / 7336 / 191.72 / 6
Kot Bhie / PBT 37 / 9.42 / 0.444 / 1.32 / 2600 / 4500 / 230.81 / 10.64 / 9672 / 109.06 / 4.72
Naiyawala / PBT 38 / 9.08 / 0.183 / 1.188 / 3600 / 6200 / 409.19 / 8.24 / 16820 / 201.88 / 10.73
Chatiyana / PBT 39 / 8.53 / 0.504 / 1.148 / 8000 / 13800 / 620 / 15.45 / 19904 / 310.54 / 13.99
Bhokra / PBT 40 / 8.24 / 0.241 / 1.235 / 5600 / 9600 / 322.7 / 7.64 / 15932 / 154.68 / 5.74
Lakhi Jungle / PBT 41 / 9 / 0.541 / 1.206 / 9200 / 15800 / 636.22 / 23.87 / 20044 / 230.92 / 10.81
Kothe / PBT 42 / 8.68 / 0.534 / 1.158 / 8500 / 14800 / 663.24 / 16.66 / 20836 / 304.38 / 12.72
Phaliayana / PBT 43 / 8.86 / 0.571 / 1.183 / 7000 / 12000 / 263.24 / 26.28 / 13360 / 188.92 / 5.68
Middle of chattiyana or Phaliayana / PBT 44 / 8.9 / 0.351 / 1.132 / 5000 / 8600 / 668.65 / 9.44 / 15232 / 197.16 / 6.07
Dansinghwala / PBT 45 / 8.5 / 0.371 / 1.188 / 7200 / 12400 / 841.62 / 22.54 / 18828 / 272.66 / 15.26
Giddherwala / PBT 46 / 8.71 / 0.289 / 1.088 / 5200 / 8900 / 598.38 / 31.89 / 20508 / 304.38 / 13.64
Vrik Kalan / PBT 47 / 8.3 / 0.196 / 1.379 / 3200 / 5500 / 382.16 / 8.489 / 9764 / 107 / 6.37
Baluana / PBT 48 / 8.4 / 0.562 / 1.161 / 8200 / 14100 / 668.15 / 6.32 / 16912 / 249.8 / 12.35
Daula / PBT 49 / 8.86 / 0.451 / 1.153 / 4800 / 8300 / 776.76 / 23.62 / 17052 / 253.54 / 27.47
Kothe Chet Singh / PBT 50 / 8.64 / 0.544 / 1.263 / 11000 / 18900 / 636.22 / 7.95 / 17892 / 200.18 / 5.85
Bhisiana (Air Port) / PBT 51 / 8.66 / 0.809 / 1.183 / 7800 / 13400 / 614.6 / 10.11 / 12616 / 202.24 / 7.8
Burg Mehma / PBT 52 / 9.15 / 0.988 / 1.042 / 6600 / 11300 / 922.7 / 10.65 / 18268 / 279.2 / 8.01
Killi Nagal Wali / PBT 53 / 9.05 / 0.974 / 1.115 / 9000 / 15500 / 803.78 / 5.24 / 14016 / 164.6 / 7.31
Kothe Phulwala / PBT 54 / 8.58 / 0.478 / 1.075 / 9400 / 16200 / 738.92 / 6.32 / 18500 / 290.58 / 15.02
S1.3: Soil types of all fifty-one samples
Soil Types / Sample IDCoarse loamy soil, well drained (Ustic Hamlocambids)/ sandy soils, excessively drained (Ustic Torripsamments) / PBT- 15, 16, 17, 18, 20, 21,22, 24, 26, 27,28,29, 31, 32
Coarse loamy soil, well drained (Ustic Hamlocambids)/ sandy over loamy soils, somewhat well drained (Ustic Hamlocambids) / PBT- 3, 4, 5, 7, 11, 13, 14, 25, 30, 35, 37, 38, 40, 41, 42, 46, 47, 48, 49, 50, 51, 53, 54
Sandy soil, excessively drained (Ustic Torripsamments)/ coarse loamy soil, well drained (Ustic Hamlocambids) / PBT- 2, 6, 8, 12, 19, 23, 33, 39, 43, 44, 52
Coarse loamy soil, well drained (Typic Ustochrepts)/ Fine loamy soil, well drained (Typic Ustochrepts) / PBT- 34, 36, 45
1
S2. qe vs Ce Plots of As(V) and As(III)
Fig. S2.1Adsorption behaviour of soil soil samples As(V) (a) PBT 2, 8, 11, 14 & 23 and (b) PBT- 24, 34, 45, 49 & 50
Fig. S2.2Adsorption behaviour of soil soil samples As(III) (a) PBT 2, 8, 11, 14 & 23 and (b) PBT- 24, 34, 45, 49 & 50
S3. Adsorption Study
S3.1Langmuir Adsorption Isotherm:
The Langmuir isotherm is valid for monolayer adsorption and their surface containing a finite number of identical sites. The model assumes uniform energies for adsorption onto the surface and no transmigration of adsorbate in the plane of the surface. Based upon these assumptions, Langmuir represented the following equation:
The above equation is also written as follows:
Where,Ce is the equilibrium concentration of adsorbate (mg/L), qe is the amount of metal adsorbed per gram of the adsorbent at equilibrium (mg/g), qm is maximum monolayer coverage capacity (mg/g) and KL is Langmuir isotherm constant (L/g).
The value of KL and qm is calculated by slope and intercept of Langmuir plot of 1/qe versus 1/Ce. Langmuir equation is also written as follows:
The Langmuir isotherm is also plotted by Ce/qe versus Ce.
Separation factor (SF) provides information about favorability of adsorption; it is calculated using equation as given below:
SF = 1/ (1+ CoKL)
where Co stands for initial concentration.
Fig.S3.1Langmuir Isotherm plots of As(V) adsorption on soil samples at room temperature (a) Sample ID PBT- 2,11, 14, 23 and 34 (b) Sample ID PBT- 24, 45, 49, 50 and 8
Fig.S3.2Langmuir Isotherm plots of As(III) adsorption on soil samples at room temperature (a) Sample ID PBT- 2, 8, 11, 14 and 23 (b) Sample ID PBT- 24, 34, 45, 49 and 50
S3.2 Freundlich Adsorption Isotherm
The Freundlich isothermis an empirical equation employed to describe heterogeneous systems. The Freundlich equation is expressed as:
Where KF = Freundlich isotherm constant (mg/g), n is adsorption intensity, 1/n stands for strength of adsorption in adsorption process, Ce is the equilibrium concentration of adsorbate (mg/L) and qe is the amount of metal adsorbed per gram of the adsorbent at equilibrium (mg/g).
This equation is also written as follows.
log qe= log KF + 1/n logCe
The Freundlich plot was plotted by log qe versus log Ce and value of Kf and n is calculated.
n=1 indicates partition between two phases are independent of concentration.
1/n <1 Normal adsorption
1/n >1 cooperative adsorption
Fig.S3.3Freundlich Isotherm plots for As(V) adsorption on soil samples at room temperature (a) Sample ID PBT- 2, 8, 11, 14 and 23 (b) Sample ID PBT- 24, 34, 45, 49 and 50
Fig.S3.4 Freundlich Isotherm plots of As(III) adsorption on soil samples at room temperature (a) Sample ID PBT- 2,8,11,14 and 23 (b) Sample ID PBT- 24, 34, 45, 49 and 50
S3.3 Temkin Adsorption Isotherm
This isotherm contains a factor that explicitly takes into account the thermodynamics of adsorbate-adsorbent interactions. By ignoring the extremely low and large value of concentrations, the model assumes that heat of adsorption (function of temperature) of all molecules in the layer would decrease linearly rather than logarithmic coverage. Arsenic implied in the equation, its derivation is characterized by a uniform distribution of binding energies (up to some maximum binding energy) was carried out by plotting the quantity sorbed qeagainst ln Ce. The constants were determined from the slope and intercept. The model is given by the following equation:
The above equation is written as linear form is given below.
Where AT is the Temkin isotherm equilibrium binding constant (L/g), B stands for Temkin isotherm constant, R is universal gas constant (8.314J/mol/K) at Temperature (T) 298K and B is a constant, related to heat of sorption (J/mol)
The Temkin isotherm fit is obtained by plotting qe versus lnCe and value of B and AT is calculated.
Fig.S3.5 Temkin plots for As(V) adsorption on soil samples at room temperature (a) Sample ID PBT- 2,8,11,14 and 23 (b) Sample ID PBT- 24, 45, 49 and 50
Fig.S3.6Temkin isotherm plots of As(III) adsorption on soil samples at room temperature (a) Sample ID PBT- 2,8,11,14 and 23 (b) Sample ID PBT- 24, 34, 45, 49 and 50
S3.4 Dubinin–Radushkevich Adsorption Isotherm
Dubinin–Radushkevich (D-R) isotherm is generally applied to express the adsorption mechanism with a Gaussian energy distribution onto a heterogeneous surface.
This simplified equation is written as follows
ln q = ln qm – Kε2
Where ε (Polanyi potential) = RT ln [1 + (1/Ce)]
q is amount of arsenic adsorbed per unit weight of adsorbent (mg g-1), qm is adsorption capacity (mg/g), Ce is equilibrium concentration of arsenic in the solution (PPM), K is constant related to adsorption energy, R is universal gas constant and T is temperature in Kelvin.
D-R isotherm is plotted by ln q versus 2 and value of K and Qm are calculated.
The mean free energy of adsorption (E) defined as the free energy change, when one mole of ion is transferred to the surface of the solid from infinity in solution.
E = (-2K)-0.5
When E = 8-16 KJ/mole: adsorption is ion exchange type
E < 8 KJ/mole: Adsorption is physiosorption type
Fig.S3.6D-R isotherm plots of As(V) adsorption on soil samples at room temperature (a) Sample ID PBT- 2,8,11,14 and 23 (b) Sample ID PBT- 24, 45, 49 and 50
1
S4. SEM-EDX Spectrum Images