SUPPLEMENTARY MATERIAL FOR
A Pharmacodynamic Model of Bcr-Abl Signalling in Chronic Myeloid Leukemia
RC Jackson and T Radivoyevitch
Starting values for system variables.
These values apply to Bcr-Abl transformed cells. For normal myeloid cells the published values were used [1]. Concentrations are nanomolar. Cell counts are per ml of blood or tissue.
CML progenitor cells (cycling)3.1 e+7
G0 CML progenitor cells2.3 e+6
Circulating CML neutrophils5.1 e+7
Tissue CML neutrophils4.1 e+6
Activated CML neutrophils2.3 e+4
ROS1040
G-CSF122.9
GM-CSF0.14
STAT50.1
STAT33400
Mcl-120.2
Glutathione (reduced)700,000
Glutathione (oxidized)150,000
Bcr-Abl13.0
IL-84.0
c-Myc10.1
volM, volP and volT are mean volumes of bone marrow, plasma, and soft tissues for a 70kg human; the default values used were 1400, 2900, and 65700 respectively.
Equations of the myeloL Model
P = CML progenitor cells (cells/ml bone marrow)
N = circulating CML neutrophils (cells/ml blood)
TN = tissue CML neutrophils (cells/g tissue)
AN = activated CML neutrophils (cells/g tissue)
BcrAbl = Bcr-Abl(nM)
G = G-CSF(nM); Gb = baseline concentration of G-CSF in absence of Bcr-Abl
GM = GM-CSF (nM)
IL3b = baseline concentration IL-3 in absence of Bcr-Abl
cMycb = baseline concentration of cMyc in absence of Bcr-Abl.
Rate equations:
1.vX.P = Vx.p*IL3/(IL3+Kil3)
2.vP.P = P*Vp.p*GM-CSF/(GM-CSF+Kgm)*(1-Qf)*(1+cMyc/Kmyc)
3.vP.Q = P*Vp.p*GM-CSF/(GM-CSF+Kgm)*Qf*(1+cMyc/Kmyc)
4.vQ.P =Q*Vq.p/(1+P/Kp)
5.vP.N = P*Vp.n*G/(G+Kg)qsx
6.vP.M = P*Kp.m
7.vN.TN = N*Vn.tn*IL8/(IL8+Kil8)
8.vTN.X =TN*Vtn.x/(1+Mcl1/Kmcl1)
9.vTN.AN =TN*Vtn.an*STAT5/(stat5+Kstat5)
10.vAN.TN =AN*Van.tn
11.vX.GM =Vx.gm*(1+STAT5/Kastat5)
12.vGM.X=GM*Vgm.x*(1+N/Kn)
13.vX.STAT5=Vx.stat5*(1+BcrAbl*redox/(Kbcrabl*(1+drug3/Kdas)))
14.vSTAT5.X=stat5*Vstat5.x
15.vX.STAT3=Vx.stat3*(1+BcrAbl*redox/(Kbcrabl*(1+drug3/Kdas)))
16.vSTAT3.X=stat3*Vstat3.x
17.vN.X=N*Vn.x/(1+Mcl1/Kmcl1)
18.vX.MCL1=Vx.mcl1*STAT5/(STAT5+Kmstat5)/(1+drug6/Kseli)
19.vMCL1.X=Mcl1*Vmcl1.x
20.vX.ROS=stat3*Vx.ros/(stat3+Kstat3)
21.vGSH.GSSG=ROS*Vgsh.gssg/(ROS+Kros)*(gsh/Kgsh/(1+gsh/Kgsh))
22.vGSSG.GSH=GSSG*Vgssg.gsh/(GSSG+Kgssg)
23.vROS.X=ROS*drug9*Kros2
24.vPEITC=Vpeitc*peitc/(peitc+Kpeitc)
25.IL3=IL3b*STAT5/Kmil3
26.cMyc=cMycb* (1+STAT5/Kistat)
27.redox=GSH/(GSH+2*GSSG)
Differential equations:
28.dP =vX.P+vP.P-vP.N-vP.Q+vQ.P-vP.M;
29.dQ =vP.Q-vQ.P;
30.dN =vP.N*volM/volP-vN.TN-vN.X
31.dTN=vN.TN*volP/volT-vTN.X-vTN.AN+vAN.TN
32.dAN=vTN.AN-vAN.TN
33.dGM =vX.GM-vGM.X
34.dSTAT5 =vX.STAT5-vSTAT5.X
35.dSTAT3=vX.STAT3-vSTAT3.X
36.dMcl1 =vX.MCL1-vMCL1.X
37.dROS =vX.ROS-vGSH.GSSG-vROS.X
38.dgsh=2*vGSSG.GSH-vGSH.GSSG-vPEITC
39.dGSSG =(vGSH.GSSG+vPEITC)/2-vGSSG.GSH
Parameter definitions:
In the rate equations listed above, terms with the form vA.B define the rate of conversion of A to B. “X” indicates that the source or sink for that process is not explicitly modeled as a system variable. Va.b indicates the maximum velocity under saturating substrate conditions (Vmax) for conversion of A to B. K indicates a rate constant or a kinetic constant, and Ki indicates an inhibition constant; their meaning can be inferred from the rate equations.
The reduction/oxidation state of the cell, redox, is defined as GSH/(GSH+2*GSSG). Ki values used for imatinib, dasatinib, and nilotinib were 85 nM, 0.8 nM and 13 nM respectively [1]. All are described in the model equations as “Kdas”.
Equations of the myeloLV model
This version of the model describes the growth of Bcr-Abl+ cell lines in vitro. It incorporates equations 2, 3, 4, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 27, 28, 29, 34, 35, 36, 37, 38, and 39 of the myeloL model. Equation 17 is used in a modified form as:
17.vP.X=P*Vp.x/(1+Mcl1/Kmcl1)
i.e. it assumes that proliferating Bcr-Abl+ cells may undergo apoptosis without first differentiating, and that the apoptosis is inhibited by Mcl-1. Equation 28 is then modified as:
28.dP =vP.P-vP.Q+vQ.P-vP.X;
GM-CSF is treated as a constant component of the tissue culture medium, with a default concentration of 1.5nM.
Combined modelling of normal and CML myeloid cell populations
Normal myeloid cell kinetics and c-Abl signalling were modelled using the myeloN program as described previously [1]. When normal and CML populations are modelled simultaneously, the two populations are assumed to interact at two levels. First, GM-CSF levels are depleted by binding to circulating myeloid cells, both normal neutrophils and circulating CML cells [11, 17, 20]. Second, normal and CML progenitor cells compete for space in the bone marrow, whose capacity is finite. This reflects the fact that myeloid progenitor cells require an adhesion molecule attachment signal in order to proliferate. The space on the bone marrow stroma is proportioned between transformed and untransformed progenitor cells in proportion to their proliferation rates. Excess progenitor cells that cannot attach to stroma undergo apoptosis. In fact, myeloid progenitor cells, both normal and transformed, have to compete not only with each other, but with erythroid and other cell lineages. We have not yet derived a complete dynamic description of these complex interactions; our model represents a first approximation.
Concentrations of extracellular cytokines whose transcription is driven by c-Abl or Bcr-Abl(IL-3, GM-CSF) are calculated as weighted means of expression levels in untransformed and transformed cells, weighted according to the respective circulating cell numbers.
Program listings may be obtained from the R package “myelo” which is available from github from which it is directly installable, from source, using directions provided at
Parameter Estimates
The values of parameters used by the model can be obtained from the program listing, which may be obtained as described above. Rate constants and kinetic constants used to describe inter-conversion of the various cell compartments were obtained from previously published models of myeloid cell maturation and turnover [16-22, 41]. Literature values were used for levels of reduced and oxidized glutathione and for glutathione reductase and glutathione peroxidase in CML cells [43, S5]. Inhibition parameters for Bcr-Abl kinase inhibitors were from [24-26], and for seliciclib from [30]. Mcl-1 values were based on [30-31]. PK parameters were from [35-40].
We could not find published values for the cellular concentration of Bcr-Abl protein in the literature. However, estimates of its activity are available [10, 29], and nanomolar concentration was estimated by assuming a turnover number typical for this class of kinase. Similarly we do not have experimental measurements for absolute levels of STAT3 and STAT5 in CML cells, though relative values in normal and CML cells are available [3, 4, 6-9, S1-S4]. For these parameters, estimates were based on values that satisfied the flowing constraints: (i) predicted values of circulating blood counts in CML patients and control individuals were in line with clinically determined values; (ii) predicted rates of apoptosis of normal and CML neutrophils agreed with observation; and (iii) the predicted relative changes between normal and CML cells agreed with observation. Again, absolute values for ROS are difficult to estimate, though an extensive literature exists on relative changes in a range of pathological conditions, including CML. We based our estimates on the levels that, when used in the model, predicted the observed degree of oxidation of glutathione.
Parameterization of models of complex biological systems is a continuing process, and as improved data become available, they will be incorporated into the model and displayed on our website.
Table S.1 Control run with Bcr-Abl = 0
MYELOL12 Model of CML Cell Kinetics
------
Time(hr) Progenitors G0 cells Blood neut Tissue neut Active neut ROS
------
0.0 4.591e+006 2.451e+005 5.748e+006 9.311e+004 9.382e+001 2.296e+001
8.0 4.591e+006 2.451e+005 5.748e+006 9.311e+004 9.382e+001 2.296e+001
16.0 4.591e+006 2.451e+005 5.748e+006 9.311e+004 9.382e+001 2.296e+001
24.0 4.591e+006 2.451e+005 5.748e+006 9.311e+004 9.382e+001 2.296e+001
------
------
Time STAT3 STAT5 Mcl-1 c-Myc GSH GSSG
------
0.0 2.898e+001 1.002e-002 2.002e+000 1.000e+000 9.999e+005 3.700e+001
8.0 2.898e+001 1.002e-002 2.002e+000 1.000e+000 9.999e+005 3.701e+001
16.0 2.898e+001 1.002e-002 2.002e+000 1.000e+000 9.999e+005 3.701e+001
24.0 2.898e+001 1.002e-002 2.002e+000 1.000e+000 9.999e+005 3.701e+001
------
Abbreviations: G0 cells:non-cycling bone marrow progenitor cells. Blood neut: circulating neutrophils; tissue neut: tissue-infiltrating neutrophils; active neut: activated tissue neutrophils; other abbreviations as defined in main text.
Table S.2 Bcr-Abl constitutively expressed at 13 nM
MYELOL12 Model of CML Cell Kinetics
------
Time(hr) Progenitors G0 cells Blood neut Tissue neut Active PMN ROS
------
0.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.036e+003
8.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.036e+003
16.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.036e+003
24.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.036e+003
------
------
Time STAT3 STAT5 Mcl-1 c-Myc GSH GSSG
------
0.0 3.405e+003 1.008e-001 2.018e+001 1.400e+001 7.000e+005 1.500e+005
8.0 3.405e+003 1.008e-001 2.018e+001 1.010e+001 7.000e+005 1.500e+005
16.0 3.405e+003 1.008e-001 2.018e+001 1.010e+001 7.000e+005 1.500e+005
24.0 3.405e+003 1.008e-001 2.018e+001 1.010e+001 7.000e+005 1.500e+005
------
Abbreviations as defined in table S.1.
Table S.3 Time course of MTD of imatinib
MYELOL12 Model of CML Cell Kinetics Imatinib at 3.4 micromolar
------
Time(hr) Progenitors G0 cells Blood neut Tissue neut Active neut ROS
------
0.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.037e+003
48.0 1.104e+007 2.146e+006 4.001e+007 1.176e+006 2.474e+003 7.857e+002
96.0 4.789e+006 1.688e+006 2.824e+007 4.526e+005 6.907e+002 3.092e+002
144.0 2.815e+006 1.042e+006 1.923e+007 2.502e+005 3.470e+002 1.308e+002
192.0 2.088e+006 5.180e+005 1.308e+007 1.603e+005 2.157e+002 7.117e+001
240.0 1.732e+006 2.234e+005 9.020e+006 1.079e+005 1.438e+002 4.578e+001
288.0 1.553e+006 9.466e+004 6.360e+006 7.470e+004 9.876e+001 3.267e+001
336.0 1.486e+006 4.855e+004 4.639e+006 5.322e+004 6.992e+001 2.562e+001
384.0 1.498e+006 3.536e+004 3.557e+006 3.951e+004 5.134e+001 2.146e+001
432.0 1.558e+006 3.411e+004 2.894e+006 3.093e+004 3.970e+001 1.902e+001
480.0 1.618e+006 3.680e+004 2.501e+006 2.571e+004 3.255e+001 1.768e+001
528.0 1.678e+006 4.055e+004 2.290e+006 2.272e+004 2.827e+001 1.674e+001
576.0 1.738e+006 4.430e+004 2.170e+006 2.112e+004 2.595e+001 1.635e+001
624.0 1.798e+006 4.805e+004 2.156e+006 2.046e+004 2.490e+001 1.617e+001
672.0 1.852e+006 5.164e+004 2.156e+006 2.046e+004 2.490e+001 1.617e+001
720.0 1.856e+006 5.351e+004 2.156e+006 2.046e+004 2.490e+001 1.617e+001
------
MYELOL12 Model of CML Cell Kinetics
------
Time STAT3 STAT5 Mcl-1 c-Myc GSH GSSG
------
0.0 3.405e+003 1.008e-001 2.018e+001 1.010e+001 7.000e+005 1.500e+005
48.0 6.827e+002 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
96.0 1.495e+002 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
144.0 7.464e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
192.0 5.071e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
240.0 3.860e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
288.0 3.105e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
336.0 2.632e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
384.0 2.322e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
432.0 2.126e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
480.0 2.014e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
528.0 1.934e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
576.0 1.899e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
624.0 1.883e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
672.0 1.883e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
720.0 1.883e+001 1.224e-002 7.961e-002 3.977e-002 7.000e+005 1.500e+005
------
Abbreviations as defined in table S.1.
Table S.4 Effect of imatinib on circulating myeloid cell count and ROS as modeled by
myeloL12 (480 hr simulations).
Imatinib (nM) myeloid cell countROS
x 106/ml % nM %
050.9100.01036.0100.0
3037.6 73.9 990.7 95.6
5033.5 65.8 942.1 90.9
10025.6 50.3 765.7 73.9
15020.3 40.0 570.2 55.0
20016.6 32.7 407.2 39.3
IC50 (WBC) 101.5nM (ROS) 165.9 nM;
Table S.5 Effect of nilotinib on circulating myeloid cell count and ROS as modeled by
myeloL12 (480 hr simulations).
Nilotinib (nM) myeloid cell countROS
x 106/ml % nM %
050.9100.01036.0100.0
341.9 82.41016.0 98.1
1030.6 60.2 890.5 86.0
2022.1 43.5 642.4 62.0
3016.8 33.0 418.1 40.4
IC50 (WBC) 16.1 nM (ROS) 25.6 nM;
Table S.6 Effect of dasatinib on circulating myeloid cell count and ROS as modeled by
myeloL12 (480 hr simulations).
Dasatinib (nM) myeloid cell countROS
x 106/ml % nM %
050.9100.01036.0100.0
124.9 48.9 740.4 71.5
215.8 31.0 371.3 35.8
311.1 21.8 176.8 17.1
48.87 17.4 97.4 9.4
66.34 12.5 46.7 4.5
85.07 10.0 32.8 3.2
104.38 8.6 27.1 2.6
163.37 6.6 21.1 2.0
203.00 5.9 19.5 1.9
242.77 5.4 18.7 1.8
322.50 4.9 17.7 1.7
IC50 (WBC) 0.98 nM (ROS) 1.6 nM;
Table S.7 Dose-response curve for seliciclib
Modeled using myeloL16. Results are 30 day values
seliciclib (micromolar)myeloid cell count ROS
x 106/ml % nM %
0.044.4 100.0 653.3 100.0
1.044.2 99.6 541.6 82.9
2.043.3 97.5 457.7 70.1
3.041.5 93.6 393.8 60.3
5.039.1 88.0 310.3 47.5
10.037.8 85.2 235.6 36.1
20.035.6 80.2 169.8 26.0
30.033.5 75.4 142.2 21.8
50.032.3 72.8 123.8 18.9
70.031.8 71.5 115.3 17.6
IC50 for suppression of ROS = 4.6 micromolar
Table S.8 IC50 level of ascorbate
MYELOL12 Model of CML Cell Kinetics
------
Time(hr) Progenitors G0 cells Blood neut Tissue neut Active PMN ROS
------
0.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 1.036e+003
2.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.408e+002
4.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.157e+002
6.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
8.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
10.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
12.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
14.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
16.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
18.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
20.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
22.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
24.0 3.121e+007 2.317e+006 5.090e+007 4.086e+006 2.268e+004 5.145e+002
------
Abbreviations as defined in table S.1.
Table S.9 Modelling in vitro growth of a Bcr-Abl cell line
MYELOLV model of Bcr-Abl cell growth. Uninhibited control
------
Time(hr) Cycling cells G0 cells v1 v4 Mcl-1 ROS
------
0.0 1.000e+005 2.700e+002 8.286e+002 7.800e+002 9.010e+000 5.553e+002
2.0 1.031e+005 3.041e+002 2.101e+003 5.200e+002 9.010e+000 5.553e+002
4.0 1.063e+005 3.321e+002 2.165e+003 5.360e+002 9.010e+000 5.553e+002
6.0 1.095e+005 3.566e+002 2.232e+003 5.525e+002 9.010e+000 5.553e+002
8.0 1.129e+005 3.794e+002 2.301e+003 5.697e+002 9.010e+000 5.553e+002
10.0 1.164e+005 4.013e+002 2.372e+003 5.872e+002 9.010e+000 5.553e+002
12.0 1.200e+005 4.233e+002 2.446e+003 6.054e+002 9.010e+000 5.553e+002
14.0 1.238e+005 4.454e+002 2.522e+003 6.242e+002 9.010e+000 5.553e+002
16.0 1.276e+005 4.681e+002 2.600e+003 6.435e+002 9.010e+000 5.553e+002
18.0 1.315e+005 4.916e+002 2.680e+003 6.634e+002 9.010e+000 5.553e+002
20.0 1.356e+005 5.162e+002 2.763e+003 6.839e+002 9.010e+000 5.553e+002
22.0 1.397e+005 5.418e+002 2.847e+003 7.048e+002 9.010e+000 5.553e+002
24.0 1.441e+005 5.687e+002 2.937e+003 7.269e+002 9.010e+000 5.553e+002
26.0 1.485e+005 5.969e+002 3.026e+003 7.490e+002 9.010e+000 5.553e+002
28.0 1.532e+005 6.266e+002 3.121e+003 7.725e+002 9.010e+000 5.553e+002
30.0 1.579e+005 6.579e+002 3.216e+003 7.962e+002 9.010e+000 5.553e+002
32.0 1.628e+005 6.905e+002 3.317e+003 8.210e+002 9.010e+000 5.553e+002
34.0 1.678e+005 7.251e+002 3.419e+003 8.462e+002 9.010e+000 5.553e+002
36.0 1.730e+005 7.613e+002 3.525e+003 8.725e+002 9.010e+000 5.553e+002
38.0 1.783e+005 7.996e+002 3.633e+003 8.993e+002 9.010e+000 5.553e+002
40.0 1.839e+005 8.397e+002 3.746e+003 9.273e+002 9.010e+000 5.553e+002
42.0 1.895e+005 8.820e+002 3.861e+003 9.557e+002 9.010e+000 5.553e+002
44.0 1.954e+005 9.265e+002 3.981e+003 9.855e+002 9.010e+000 5.553e+002
46.0 2.014e+005 9.733e+002 4.103e+003 1.016e+003 9.010e+000 5.553e+002
48.0 2.076e+005 1.023e+003 4.231e+003 1.047e+003 9.010e+000 5.553e+002
------
Table S.10 Effect of imatinib (3.4 μM) onin vitro growth of a Bcr-Abl cell line
MYELOLV model of Bcr-Abl cell growth
------
Time(hr) Cycling cells G0 cells v1 v4 Mcl-1 ROS
------
0.0 1.000e+005 2.700e+002 8.286e+002 7.800e+002 9.010e+000 5.553e+002
2.0 1.026e+005 3.038e+002 2.091e+003 9.801e+002 4.687e+000 5.266e+002
4.0 1.044e+005 3.297e+002 2.126e+003 1.484e+003 3.096e+000 4.735e+002
6.0 1.053e+005 3.489e+002 2.145e+003 1.826e+003 2.511e+000 4.162e+002
8.0 1.057e+005 3.627e+002 2.154e+003 1.995e+003 2.296e+000 3.599e+002
10.0 1.059e+005 3.723e+002 2.158e+003 2.066e+003 2.217e+000 3.067e+002
12.0 1.061e+005 3.789e+002 2.161e+003 2.095e+003 2.188e+000 2.579e+002
14.0 1.062e+005 3.835e+002 2.165e+003 2.108e+003 2.177e+000 2.140e+002
16.0 1.064e+005 3.869e+002 2.168e+003 2.114e+003 2.173e+000 1.755e+002
18.0 1.065e+005 3.894e+002 2.171e+003 2.117e+003 2.173e+000 1.428e+002
20.0 1.067e+005 3.912e+002 2.174e+003 2.121e+003 2.173e+000 1.156e+002
22.0 1.069e+005 3.929e+002 2.177e+003 2.124e+003 2.173e+000 9.380e+001
24.0 1.070e+005 3.941e+002 2.180e+003 2.127e+003 2.173e+000 7.678e+001
26.0 1.072e+005 3.953e+002 2.184e+003 2.130e+003 2.173e+000 6.378e+001
28.0 1.073e+005 3.965e+002 2.187e+003 2.133e+003 2.173e+000 5.398e+001
30.0 1.075e+005 3.977e+002 2.190e+003 2.136e+003 2.173e+000 4.660e+001
32.0 1.076e+005 3.988e+002 2.193e+003 2.139e+003 2.173e+000 4.101e+001
34.0 1.078e+005 3.998e+002 2.196e+003 2.142e+003 2.173e+000 3.675e+001
36.0 1.080e+005 4.007e+002 2.200e+003 2.145e+003 2.173e+000 3.347e+001
38.0 1.081e+005 4.016e+002 2.203e+003 2.148e+003 2.173e+000 3.091e+001
40.0 1.083e+005 4.026e+002 2.206e+003 2.152e+003 2.173e+000 2.891e+001
42.0 1.084e+005 4.035e+002 2.209e+003 2.155e+003 2.173e+000 2.733e+001
44.0 1.086e+005 4.045e+002 2.212e+003 2.158e+003 2.173e+000 2.607e+001
46.0 1.087e+005 4.054e+002 2.216e+003 2.161e+003 2.173e+000 2.506e+001
48.0 1.089e+005 4.063e+002 2.219e+003 2.164e+003 2.173e+000 2.426e+001
------
Table S.11 PK/PD modelling of 400mg imatinib/70 kg patient, oral, daily x 10
MYELOL13 Model of CML Cell Kinetics
------
Time(d) Progenitors G0 cells Blood neut Tissue neut Active PMN ROS
------
0.0 8.767e+006 6.157e+005 1.270e+007 5.402e+005 1.864e+003 5.194e+002
1.0 6.295e+006 6.004e+005 1.209e+007 4.338e+005 8.204e+002 3.953e+002
2.0 4.633e+006 5.491e+005 1.105e+007 3.449e+005 4.551e+002 2.092e+002
3.0 3.528e+006 4.702e+005 9.853e+006 2.803e+005 3.374e+002 1.279e+002
4.0 2.797e+006 3.796e+005 8.654e+006 2.323e+005 2.714e+002 9.311e+001
5.0 2.304e+006 2.896e+005 7.565e+006 1.954e+005 2.247e+002 7.329e+001
6.0 1.964e+006 2.094e+005 6.611e+006 1.661e+005 1.894e+002 5.989e+001
7.0 1.723e+006 1.458e+005 5.772e+006 1.418e+005 1.607e+002 5.021e+001
8.0 1.545e+006 9.973e+004 5.052e+006 1.220e+005 1.379e+002 4.307e+001
9.0 1.418e+006 6.860e+004 4.446e+006 1.058e+005 1.190e+002 3.769e+001
10.0 1.323e+006 4.878e+004 3.907e+006 9.172e+004 1.028e+002 3.333e+001
11.0 1.256e+006 3.680e+004 3.460e+006 7.999e+004 8.963e+001 2.995e+001
12.0 1.208e+006 2.982e+004 3.086e+006 7.027e+004 7.842e+001 2.724e+001
13.0 1.182e+006 2.585e+004 2.778e+006 6.211e+004 6.900e+001 2.514e+001
14.0 1.163e+006 2.376e+004 2.527e+006 5.515e+004 6.106e+001 2.331e+001
15.0 1.150e+006 2.261e+004 2.317e+006 4.952e+004 5.472e+001 2.204e+001
16.0 1.159e+006 2.236e+004 2.137e+006 4.483e+004 4.933e+001 2.087e+001
17.0 1.169e+006 2.255e+004 2.012e+006 4.108e+004 4.494e+001 1.995e+001
18.0 1.179e+006 2.302e+004 1.907e+006 3.789e+004 4.123e+001 1.926e+001
19.0 1.190e+006 2.349e+004 1.817e+006 3.517e+004 3.812e+001 1.870e+001
20.0 1.201e+006 2.396e+004 1.757e+006 3.329e+004 3.577e+001 1.815e+001
21.0 1.211e+006 2.443e+004 1.699e+006 3.165e+004 3.394e+001 1.773e+001
22.0 1.222e+006 2.497e+004 1.669e+006 3.031e+004 3.240e+001 1.746e+001
23.0 1.233e+006 2.553e+004 1.640e+006 2.937e+004 3.125e+001 1.726e+001
24.0 1.244e+006 2.610e+004 1.611e+006 2.852e+004 3.030e+001 1.709e+001
25.0 1.255e+006 2.667e+004 1.607e+006 2.802e+004 2.961e+001 1.697e+001
26.0 1.265e+006 2.715e+004 1.607e+006 2.759e+004 2.910e+001 1.689e+001
27.0 1.276e+006 2.762e+004 1.607e+006 2.738e+004 2.879e+001 1.683e+001
28.0 1.286e+006 2.809e+004 1.607e+006 2.738e+004 2.868e+001 1.681e+001
29.0 1.296e+006 2.856e+004 1.607e+006 2.738e+004 2.866e+001 1.680e+001
30.0 1.305e+006 2.903e+004 1.608e+006 2.738e+004 2.865e+001 1.680e+001
------
------
Time GM-CSF NAP-2 STAT3 bacteria Mcl-1 GSSG
------
0.00 4.576e+000 4.491e-002 4.158e+002 0.000e+000 2.002e+000 1.502e+005
2.00 7.117e-001 1.499e-002 3.345e+002 0.000e+000 7.720e-002 1.502e+005
4.00 7.870e-001 1.157e-002 2.011e+002 0.000e+000 4.963e-002 1.502e+005
6.00 9.169e-001 1.111e-002 1.099e+002 0.000e+000 4.371e-002 1.502e+005
8.00 1.071e+000 1.101e-002 6.257e+001 0.000e+000 4.157e-002 1.501e+005
10.00 1.250e+000 1.098e-002 4.041e+001 0.000e+000 4.070e-002 1.498e+005
12.00 1.456e+000 1.097e-002 3.025e+001 0.000e+000 4.033e-002 1.494e+005
14.00 1.691e+000 1.097e-002 2.538e+001 0.000e+000 4.018e-002 1.490e+005
16.00 1.955e+000 1.097e-002 2.278e+001 0.000e+000 4.011e-002 1.485e+005
18.00 2.248e+000 1.096e-002 2.119e+001 0.000e+000 4.008e-002 1.479e+005
20.00 2.572e+000 1.096e-002 2.009e+001 0.000e+000 4.006e-002 1.474e+005
22.00 2.925e+000 1.096e-002 1.925e+001 0.000e+000 4.006e-002 1.468e+005
24.00 3.304e+000 1.096e-002 1.856e+001 0.000e+000 4.006e-002 1.462e+005
26.00 3.706e+000 1.096e-002 1.804e+001 0.000e+000 4.006e-002 1.457e+005
28.00 4.128e+000 1.096e-002 1.759e+001 0.000e+000 4.006e-002 1.451e+005
30.00 4.565e+000 1.096e-002 1.716e+001 0.000e+000 4.006e-002 1.445e+005
------
Supplementary Material References
S1. Shi X, Chen X, Li X et al. (2014) Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin Cancer Res 20: 151-163.
S2 Shi X, Cheng C, Zhang H et al. (2009) Triptolide induces Bcr-Abl transcription and induces apoptosis in STI571-resistant chronic myelogenous leukemia cells harbouring T135I mutation. Clin Cancer Res 15: 1686-1697.
S3. Karimiani EG, Marriage F, Merritt AJ, Burthen J, Byers RJ, Day PJ (2013) Single cell analysis of K562 cells: an imatinib-resistant subpopulation is adherent and has upregulated expression of BCR-ABL mRNA and protein. Exp Hematol Nov 20. pii: S0301-472x(13)00865-5. doi:10.1016/j.exphem.2013.11.006
S4. Berger A, Hoelbl-Kovacic A, Bourgeais J et al (2013) PAK-dependent STAT5 serine phosphorylation is required for Bcr-Abl-induced leukemogenesis. Leukemia 2013, Nov 22. Doi 10.1038/leu 2013.351
S5. Harrap KR, Jackson RC (1969) Some biochemical aspects of leukaemias: leucocyte glutathione metabolism in chronic granulocytic leukaemia. Eur J Cancer 5: 61-67
1 | Page