Free-mercury catalyticacetylenehydrochlorination over bimetallic Au–Bi/γ-Al2O3:A low gold contentcatalyst
Jigang Zhao1,*, Xiaoguang Cheng1, Lei Wang1,2,Ruofan Ren1,2,
Junjian Zeng1, Henghua Yang1, Benxian Shen1
aState Key Laboratory of Chemical Engineering, East China University of Science and Technology, 130 Meilong road, Shanghai 200237, PR China;
bTianjin Dagu Chemical Co., Ltd., 1 Xinghua Road, Tianjin 300455, PR China
Tables of Content
Fig. S1 Catalyst experimental setup
Fig. S2 Gas chromatogram spectrum of the products
Fig. S3Catalytic performance of 1Au50Bi/γ-Al2O3catalyst.Fig. S4 TGA profile of γ-Al2O3 support
Fig. S4 Isothermal adsorption-desorption curves of fresh samples
Fig.S5 SEM images of:fresh0.1Au/γ-Al2O3(a), fresh 0.1Au5Bi/γ-Al2O3(b), used 1Au/γ-Al2O3, running for 4 h (c) and used 0.1Au5Bi/γ-Al2O3, running for 13h (d)
Fig. S6 TGA profile of used 0.1Au5Bi/γ-Al2O3catalyst under N2 atmosphere
Fig. S7 TGA profile of γ-Al2O3support
Fig. S8 XRD pattern of BiOCl
Tab. S1 The real loading values of the different catalysts detected by ICP-AES
Tab. S2 Some ofthe reported results of Au-base catalysts with AC as the support
Tab.S3. Textural characterization
Tab. S4Relative content of Au species in the catalysts before and after reaction,determined byXPS
1-buffer tank 2-silica-gel drier 3-5A molecular drier 4-mass flow controller
5-fixed bed reactor 6-sodium hydroxide tank
Fig. S1 Catalyst experimental setup
Fig. S2 Gas chromatogram spectrum of the products. Analysis conditions were as follows: Al2O3PLOTcolumn type; column temperature, 50°C; detector type, flame ionization detector (FID); detector and vaporizer temperature, 180°C and injection volume, 20 μL.
Fig. S3Catalytic performance of 0.1Au5Bi/γ-Al2O3catalyst. Reaction conditions: Temperature (T) = 150 °C, C2H2gas hourly space velocity (GHSV) = 360 h−1, Pressure(P)=0.1 MPa, feed volume ratioVHCl/VC2H2= 1.05.
Fig. S4 Isothermal adsorption-desorption curves of fresh samples
(a) (b)
(c) (d)
Fig S5 SEM images of:fresh1Au/γ-Al2O3(a), fresh 0.1Au5Bi/γ-Al2O3(b), used 0.1Au/γ-Al2O3, running for 4 h (c) and used 0.1Au5Bi/γ-Al2O3, running for 13h (d)
Fig. S6 TGA profile of used 0.1Au5Bi/γ-Al2O3catalyst under N2 atmosphere
Fig. S7 TGA profile of γ-Al2O3 support
Fig. S8 XRD pattern of BiOCl
Tab. S1 The real loading values of the different catalysts detected by ICP-AES
Catalyst / Au wt(%) / Bi wt (%)a0.1Au/γ-Al2O3 / 0.082 / -
5Bi/γ- Al2O3 / - / 2.81
0.05Au5Bi/γ- Al2O3 / 0.043 / 2.91
0.1Au5Bi/γ- Al2O3 / 0.092 / 2.86
0.2Au5Bi/γ- Al2O3 / 0.186 / 2.72
0.3Au5Bi/γ- Al2O3 / 0.267 / 2.95
aThe real values of Bi is lower than the set value due to the hydrolysis of BiCl3
Tab. S2 Some ofthe reported results of Au-base catalysts with AC as the support
Catalysts / Au wt(%) / GHSV(h-1) / XC2H2 / SVCMAu/SAC [13] / 1.0% / 360 / 80.4 / 99.9
Au-Co(Ⅲ)/SAC[16] / 1.0% / 360 / 92.0 / 99.9
Au-La/SAC [15] / 1.0% / 360 / 90.0 / 99.9
Au-Co-Cu/SAC [13] / 1.0% / 360 / 99.8 / 99.9
Tab.S3. Textural characterization
Samples / SBET(m2/g)a / Vp(cm3/g)b / Dp(nm)cFresh / Used / Fresh / Used / Fresh / Used
γ-Al2O3 / 188.8 / - / 0.486 / - / 9.34 / -
0.1Au/γ-Al2O3 / 187.2 / 132.8 / 0.485 / 0.443 / 9.33 / 9.11
5Bi/γ-Al2O3 / 185.5 / 155.3 / 0.483 / 0.462 / 9.31 / 9.21
0.05Au5Bi/γ-Al2O3 / 186.0 / 164.3 / 0.485 / 0.471 / 9.32 / 9.23
0.1Au5Bi/γ-Al2O3 / 186.3 / 163.5 / 0.486 / 0.473 / 9.35 / 9.28
0.2Au5Bi/γ-Al2O3 / 185.8 / 152.9 / 0.484 / 0.466 / 9.35 / 9.25
0.3Au5Bi/γ-Al2O3 / 187.1 / 146.8 / 0.482 / 0.461 / 9.30 / 9.23
aBET specific surface area; bBJH total pore volume; cAverage pore diameter
Tab. S4Relative content of Au species in the catalysts before and after reaction, determined byXPSa
Catalyst / Au species (%) / Binding Energy (eV)Au3+ / Au1+ / Au0 / Au3+ / Au1+ / Au0
Fresh 0.1Au/γ-Al2O3 / 0b / 0b / 100 / 86.3 / - / 84.0
Used 0.1Au/γ-Al2O3 / 0b / 0b / 100 / 86.3 / - / 84.0
Fresh 0.1Au5Bi/γ-Al2O3 / 46.7 / 3.6 / 49.7 / 86.4 / 85.1 / 83.7
Used 0.1Au5Bi/γ-Al2O3 / 33.3 / 15.1 / 51.6 / 86.5 / 85.2 / 83.7
a The relative content of Au species was for reference only due to the low total loading of metal present. But it can provide some information.
b The active component Au3+ can be reduced to Au0 leading to the Au3+ content was too low to below the XPS lower bound in the preparation and storage process of the catalysts.