Supplementary Table 10. Potential drug targets in C. hominis

Gene / Function / ORFs / Ref
Type I fatty acid synthase (CpFAS1) / Fatty acid biosynthesis / Chro.30258 / [1]
Acetyl-CoA carboxylase / Fatty acid biosynthesis / Chro.80425 / [2]
Fatty acyl-CoA synthetase (LCFA) / Fatty acid metabolism / Chro.40386 / [3]
Type I polyketide synthase / Polyketides biosynthesis / Chro.40330 / [4]
CTP synthase / Nucleotide metabolism / Chro.50211 / [5]
dUTPase / Nucleotide metabolism / Chro.70577 / [5]
Ribonucleotide reductase / Purine metabolism / Chro.60090 / [6]
Inosine 5’ monophosphate dehydrogenase / Nucleotide salvage / Chro.60012 / [7]
Thymidine kinase / Nucleotide salvage / Chro.50398 / [7]
Thymidylate synthase-dihydrofolate reductase (TS-DHFR) / DNA synthesis / Chro.40506 / [8]
Arginine decarboxylase / Polyamine biosynthesis / NF / [9]
Spermidine:spermine-N1-acetyltransferase (SSAT) / Polyamine biosynthesis / NF / [9]
Pyruvate–NADP oxidoreductase (PNO) / Energy metabolism / Chro.40087 / [10]
PPi-phosphofructokinase / Energy metabolism / Chro.20231 / [11]
Glycolitic enzymes (e.g. lactate dehydrogenase) / Energy metabolism / Chro.70063 / [5]
Alternative oxidase (CpAOX) / Aerobic respiratory chain / Chro.30354 / [12]
CpATPase3 (Type V P-ATPases) / Transporter system / Chro.20456 / [13]
ATP-binding cassette / Transporter system / Chro.60540 / [14]
Sugar or nucleotide-sugar transport (12)a / Transporter system / Chro.30458
Chro.20067
Chro.40323 / [15]
Amino acid transport (5) a / Transporter system / Chro.80431
ABC family transport (23) a / Transporter system / Chro.20017
Chro.10084
Chro.60540 / [16]
Proteinases (e.g. cryptopain) / Host cell invasion / Chro.60563 / [17]
Acidocalcisomes related (e.g.Vacuolar H+-ATPase subunit D) / Ca+ Storage / Chro.50340 / [18; 19]
Anti-oxidant enzymes (e.g thioredoxin reductase) / Thioredoxin redox cycle / Chro.20464 / [5;17]
Membrane protein (e.g. TRAP) / Structural / Chro.10390 / [5]
Tubulin / Structural / Chro.40322 / [20;21]

a Number of possible transporters encoded by C. hominis genome, a few ORFs examples are shown;

NF, not found.

Reference:

[1] Zhu, G. et al. Expression and functional characterization of a giant Type I fatty acid synthase (CpFAS1) gene from Cryptosporidium parvum. Mol. Biochem. Parasitol. 134, 127-135 (2004).

[2] Zuther, E. et al. Growth of Toxoplasma gondii is inhibited by aryloxyphenoxypropionate herbicides targeting acetyl-CoA carboxylase. Proc. Natl. Acad. Sci. U. S. A 96, 13387-13392 (1999).

[3] Camero, L. et al. Characterization of a Cryptosporidium parvum gene encoding a protein with homology to long chain fatty acid synthetase. J. Eukaryot. Microbiol. 50 Suppl, 534-538 (2003).

[4] Zhu, G. et al. Cryptosporidium parvum: the first protist known to encode a putative polyketide synthase. Gene 298, 79-89 (2002)

[5] Strong, W. B. & Nelson,R.G. Gene discovery in Cryptosporidium parvum: expressed sequence tags and genome survey sequences. Contrib. Microbiol. 6, 92-115 (2000).

[6] Akiyoshi, D. E. et al. Molecular characterization of ribonucleotide reductase from Cryptosporidium parvum. DNA Seq. 13(3), 167-72 (2002).

[7] Striepen, B. et al. Gene transfer in the evolution of parasite nucleotide biosynthesis. Proc. Natl. Acad. Sci. U. S. A 101, 3154-3159 (2004).

[8] Atreya, C. E. & Anderson, K. S. Kinetic characterization of bifunctional thymidylate synthase-dihydrofolate reductase (TS-DHFR) from Cryptosporidium hominis: A paradigm shift for TS activity and channeling behavior. J Biol Chem. 30;279(18), 18314-18322 (2004).

[9] Keithly, J. S. et al. Polyamine biosynthesis in Cryptosporidium parvum and its implications for chemotherapy. Mol. Biochem. Parasitol. 88(1-2), 35-42 (1997).

[10] Rotte, C. et al. Pyruvate : NADP+ oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol. Biol. Evol. 18, 710-720 (2001).

[11] Denton, H. et al. Comparison of the phosphofructokinase and pyruvate kinase activities of Cryptosporidium parvum, Eimeria tenella and Toxoplasma gondii. Mol. Biochem. Parasitol. 76(1-2), 23-29 (1996).

[12] Suzuki, T. et al. Direct evidence for cyanide-insensitive quinol oxidase (alternative oxidase) in apicomplexan parasite Cryptosporidium parvum: phylogenetic and therapeutic implications. Biochem. Biophys. Res. Commun. 23;313(4), 1044-1052 (2004).

[13] LaGier, M. J. et al. Characterisation of a novel transporter from Cryptosporidium parvum. Int. J. Parasitol. 32(7), 877-887 (2002).

[14] Perkins, M. E. et al. Cyclosporin analogs inhibit in vitro growth of Cryptosporidium parvum. Antimicrob. Agents Chemother. 42(4), 843-848 (1998).

[15] Blikslager A et al. Glutamine transporter in crypts compensates for loss of villus absorption in bovine cryptosporidiosis. Am. J. Physiol. Gastrointest. Liver Physiol. 281(3):G645-53 (2001).

[16] Zapata F. et al. The Cryptosporidium parvum ABC protein family. Mol. Biochem. Parasitol. 120(1):157-161 (2002).

[17] Coombs, G. H. & Muller S. Recent advances in the search for new anti-coccidial drugs. Int. J. Parasitol. 32(5), 497-508 (2002).

[18] Moreno, B. et al. (31)P NMR of apicomplexans and the effects of risedronate on Cryptosporidium parvum growth. Biochem. Biophys. Res. Commun. 284(3), 632-637 (2001)

[19] Moreno, S. N. & Docampo, R. Calcium regulation in protozoan parasites. Curr. Opin. Microbiol. 6(4), 359-64 (2003).

[20] Fayer, R. & Fetterer, R. Activity of benzimidazoles against cryptosporidiosis in neonatal BALB/c mice. J. Parasitol. 81(5), 794-795 (1995).

[21] Armson, A. et al. A comparison of the effects of two dinitroanilines against Cryptosporidium parvum in vitro and in vivo in neonatal mice and rats. FEMS Immunol. Med. Microbiol. 26(2), 109-13 (1999).