References

1. Ferreira, J.A., The Benjamini-Hochberg method in the case of discrete test statistics. Int J Biostat, 2007. 3(1): p. Article 11.

2. Diehn, M., et al., Large-scale identification of secreted and membrane-associated gene products using DNA microarrays. Nat Genet, 2000. 25(1): p. 58-62.

3. Szklarczyk, D., et al., The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39(Database issue): p. D561-8.

4. Bhagwat, M. and L. Aravind, PSI-BLAST tutorial. Methods Mol Biol, 2007. 395: p. 177-86.

5. Jeudy, S., et al., Dissecting the unique nucleotide specificity of mimivirus nucleoside diphosphate kinase. J Virol, 2009. 83(14): p. 7142-50.

6. Lambeth, D.O., et al., Characterization and cloning of a nucleoside-diphosphate kinase targeted to matrix of mitochondria in pigeon. J Biol Chem, 1997. 272(39): p. 24604-11.

7. Morales, M., et al., Genome comparison of a nonpathogenic myxoma virus field strain with its ancestor, the virulent Lausanne strain. J Virol, 2009. 83(5): p. 2397-403.

8. Zhang, Y., et al., Chlorella virus-encoded deoxyuridine triphosphatases exhibit different temperature optima. J Virol, 2005. 79(15): p. 9945-53.

9. Upton, C., et al., Myxoma virus expresses a secreted protein with homology to the tumor necrosis factor receptor gene family that contributes to viral virulence. Virology, 1991. 184(1): p. 370-82.

10. Schneiker, S., et al., Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol, 2007. 25(11): p. 1281-9.

11. Geisbrecht, B.V., et al., The crystal structures of EAP domains from Staphylococcus aureus reveal an unexpected homology to bacterial superantigens. J Biol Chem, 2005. 280(17): p. 17243-50.

12. Crouse, C.A. and R.J. Pauley, Molecular cloning and sequencing of the MTV-1 LTR: evidence for a LTR sequence alteration. Virus Res, 1989. 12(2): p. 123-37.

13. Pullen, A.M., et al., The open reading frames in the 3' long terminal repeats of several mouse mammary tumor virus integrants encode V beta 3-specific superantigens. J Exp Med, 1992. 175(1): p. 41-7.

14. Guan, K.L. and J.E. Dixon, Bacterial and viral protein tyrosine phosphatases. Semin Cell Biol, 1993. 4(6): p. 389-96.

15. Woellmer, A., J.M. Arteaga-Salas, and W. Hammerschmidt, BZLF1 Governs CpG-Methylated Chromatin of Epstein-Barr Virus Reversing Epigenetic Repression. PLoS Pathog. 8(9): p. e1002902.

16. Ma, S.D., et al., An Epstein-Barr Virus (EBV) mutant with enhanced BZLF1 expression causes lymphomas with abortive lytic EBV infection in a humanized mouse model. J Virol. 86(15): p. 7976-87.

17. Kalla, M., et al., AP-1 homolog BZLF1 of Epstein-Barr virus has two essential functions dependent on the epigenetic state of the viral genome. Proc Natl Acad Sci U S A. 107(2): p. 850-5.

18. Adamson, A.L., N. Wright, and D.R. LaJeunesse, Modeling early Epstein-Barr virus infection in Drosophila melanogaster: the BZLF1 protein. Genetics, 2005. 171(3): p. 1125-35.

19. Lee, B.S., et al., Suppression of tetradecanoyl phorbol acetate-induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus by K1 signal transduction. J Virol, 2002. 76(23): p. 12185-99.

20. Chang, P.J., Y.S. Chang, and S.T. Liu, Role of Rta in the translation of bicistronic BZLF1 of Epstein-Barr virus. J Virol, 1998. 72(6): p. 5128-36.

21. Sun, R., et al., Kinetics of Kaposi's sarcoma-associated herpesvirus gene expression. J Virol, 1999. 73(3): p. 2232-42.

22. Bechtel, J.T., R.C. Winant, and D. Ganem, Host and viral proteins in the virion of Kaposi's sarcoma-associated herpesvirus. J Virol, 2005. 79(8): p. 4952-64.

23. Zhu, F.X., et al., Virion proteins of Kaposi's sarcoma-associated herpesvirus. J Virol, 2005. 79(2): p. 800-11.

24. Calderwood, M.A., A.M. Holthaus, and E. Johannsen, The Epstein-Barr virus LF2 protein inhibits viral replication. J Virol, 2008. 82(17): p. 8509-19.