Bond and Fox, Chapter 3
The pathway
A graphic that presents information on the following . . . .
Person ability
Item difficulty
Precision
Item and person inconsistency
As we’ll see – having all the information in the pathway will give us much more control over measurement than, for example, just having the scalogram. P 38
Characteristics of items and scales
Unidimensionality – very important in Rasch modeling
Reliability –
Person reliability index – the expected correlation of person ordering we could expect if this sample of persons were given another parallel set of items measuring the same construct
Item reliability index – the expected correlation of item placements along the pathway if these same items were given to another sample of persons of the same size that behaved in the same way.
Basic quantities
Person ability – vertical positions of person symbols
Item difficulty – vertical positions of item symbols
Precision – sizes of person and item symbols – smaller means more precise
Fit – horizontal position of symbols
Ch 4 – Developing a test
The Bond Logical Operations Test (BLOT).
A test of childhood cognitive development suitable for administration to a whole class of students.
Items were taken one by one from Chapter 17 of Inhelder and Piaget (1958), The Growth of Logical Thinking.
The 35 items on the BLOT are identified as follows
01 Negation (to negate identity) ; Item labels courtesy of Trevor Bond
02 Reciprocal (to negate identity)
03 Implication
04 Incompatibility
05 Multiplicative compensation
06 Correlations
07 Correlations
08 Correlations
09 Conjunction
10 Disjunction
11 Conjunctive negation
12 Affirmation of p
13 Reciprocal exclusion
14 Probability
15 Reciprocal implication
16 Reciprocal (to negate identity)
17 Identity (to negate reciprocal)
18 Negation (to negate correlative)
19 Reciprocal (to cause disequilibrium)
20 Negation (to cause disequilibrium)
21 Correlative + negation > equilibrium
22 Reciprocal + negation > disequilibrium
23 Correlative + identity > disequilibrium
24 Coordination of two systems of reference
25 Complete negation
26 Complete affirmation
27 Negation of p
28 Non-implication
29 Affirmation of q
30 Equivalence
31 Negation of q
32 Negation of reciprocal implication
33 Probability
34 Coordination of two systems of reference
35 Coordination of two systems of reference
The test was administered to a group of 158 children. The results of the administration are below.
PSY 5950 L13 - 1
001 11111111110110101101011111111011111
002 11111111111111111111111111101111111
003 11010111111111011111011111101011111
004 11111111111111111111101111111111111
005 11111111111101111111011111111111111
006 11111111111110111101011111111111111
007 11111111111101111111011111111111111
008 11111111111111111111111111101011111
009 11111111111111111111111101111111111
010 11111111111111111111111111111001111
011 11111110111111111111111111111111111
012 11011111011111011111011111000110111
013 11111110111111111111011011111101111
014 11111110111111111111111111101001111
015 11111111111111011111010111101111111
016 11111111111101111101111111111111111
017 11111111111101111101111111111111111
018 11111111111101111111011111101110111
019 11111110111111111111111111111111111
020 11111111111111111110011111111110111
021 11101110111111111111111111101110111
022 11001111011101010111011111111111111
023 11111111111111111111111111111111111
024 11111111111111111111111111111101111
025 11111111111111111111011111111111111
026 11111111011111011111111110110010111
027 11111111111111111111111111111111111
028 11101111111111111111001101111011111
029 11111111111101111111110110111010111
030 11111111111111111101010110101111111
031 11111111111101111111011111111111111
032 00101110111111110111011111101101111
033 11111111011111011111011011111110111
034 11111111111111111111111111101111111
035 11111111111111111111111111111101111
036 01111111111101010101011010111001101
037 11011111111101111111011111111011111
038 11111111111110111111011111111011111
039 10011111101111011011011111111111111
040 11111111110111111111111111101011011
041 11111111110111001111011111101001111
042 11011111111111101111111111111101100
043 11111111111111111011111101101110111
044 11011111000110000111101011101100111
045 00111111111111111111010100111010111
046 11111111111111111111111111111111111
047 11111111011111110111110101111111111
048 11111110011101011111111111101100011
049 01110110110101111111011110110111111
050 11111111111101111111011101111111111
051 10010110110101101111110111111110011
052 11001101101101011111010101111011111
054 11111111110111011111011111111110111
055 11111111111101011111111111111111100
056 11111111110111111101011111101111111
057 11011110111101111110111111001011111
058 11001110111111011111011111111011111
059 11111111111111111111011111111111111
060 11111111111111011101011101110010111
061 11001110010111110111011111101110111
062 11110110111101111011110110101001111
063 11011110110110111111011111111110111
064 11111111111111011111011111111001111
065 11111111111111110011010111111111111
066 11111111111111111111011011111011011
067 11011111101110011111011011101011100
068 11111111111111011110011001111010100
070 11101101111101001001010101101111100
072 11011111010101111111011110111011111
073 11011111100101101111011101101111111
074 11101111111111111111011111101110111
075 10111111111111010001111100111011000
076 11011111001100111110010111111011111
077 11111111111101101111010111111011111
078 11000100111111011111011100101001111
079 00111111110111011111011100101111011
080 11111110101111010101110011111111100
081 11111111011111100111111111111111111
082 11011111111111111111111101111111111
083 11111111111111111111111111101111111
084 11111111111111111111011111111111111
086 00011111011101011110011110100011111
087 11011100111111011111111000101110100
088 11111111010110111111111111101111111
090 11111110111101100101011110101010111
091 11111101100101111111001100101000111
092 11111111111111111111011111111111111
093 11111111101101010101011111100011111
094 11111111111111111101111110101110111
095 01111111011111010011010101110011100
096 11011110111111111001011110001100010
097 11111111010101011101011100101110111
098 01101010000100011110010000100100011
099 11011111111111000101010110100110011
100 11100111111111001111011001011011111
101 11111111111111111111111011111111111
102 11111111111101111111111111111111111
103 11101111111101101001000101001000111
104 11101101111101111001011111101001011
105 11011100110110100101011110101101110
106 11011110011101110011010110110110111
107 11010110101101100001010111111011111
108 11010111011101000011011001010100111
109 11101010011111111111011111111110111
110 11111100111111111101110000101110011
111 11111110100101111101011001101000000
112 11011100110101101010001100010110111
113 00011111111101010010011111111011011
114 11000110001111110011111110101111111
115 11101110111111111111100000100111111
116 01011111111101001100011110000010111
117 00001110100101010111011011101111000
118 10001100010010010000010000010000111
119 00000100000001010001000010000000000
120 11111111110111111101011011111111111
121 10100111010111000001011001101110011
122 11001100100111011111011010101100100
123 10101010011111000001010010101011111
124 11111111101110111111010100101110111
125 11111101111101011101011100101100111
126 10011110001111111000010100111110100
127 11111111101100110101011110111011011
128 11111110111111001111010110101011111
129 11111110010111010001110111101011010
130 00010110110011110101111000001000111
132 10111111010101111111110111111000011
133 11111101101111111111011000101100110
131 00111100011110011001110011100010101
134 11001100000111010000110000101100101
135 11010110001111010100000100100100011
136 11001111111100011011011000101010100
137 00011110011100110011110010101010011
138 11101110100001000000001010000010100
139 10111010101001010000001000100100100
140 11001110110101110111011000000010000
141 11101110001100010111110000110111110
143 01010110110001000000000010010010110
144 01000110000000010011010001001000100
145 11010100000101010101011001111001101
146 11001110111100000000010111101010111
147 01011100100110000000100000001100110
149 11111111111111101111110100100000101
150 11111111111111011111011111101111111
151 10000100000001000100100110000000010
152 00011101111101011011011010101010100
153 11111110010111111111010111001110111
154 11001000001001101111001100101010011
155 11011111111111111111111111101110111
156 01101110011100110101011001101100101
158 11001101111101110111100110101111111
PSY 5950 L13 - 1
Think for a moment about the complex process that begins with this 158x35 collection of numbers (5530 in all) and ends with the output, tables, graphs, and interpretations that will be created from them.
A Regular analysis of the data in SPSS.
data list fixed /id 1-3 q1 to q35 5-39.
begin data.
001 11111111110110101101011111111011111
002 11111111111111111111111111101111111
.
.
.
156 01101110011100110101011001101100101
158 11001101111101110111100110101111111
end data.
compute totalscore = sum (q1 to q35).<---- This is the usual person estimate.
fre var=totalscore /format=notable /histogram.
This is a classic “easy” test, with scores “piled up” near the top of the range of possible scores.
reliability variables = q1 to q35 /summary=total.
Reliability StatisticsCronbach's Alpha / N of Items
.876 / 35
Item-Total Statistics
Scale Mean if Item Deleted / Scale Variance if Item Deleted / Corrected Item-Total Correlation / Cronbach's Alpha if Item Deleted
q1 / 25.47 / 38.277 / .380 / .873
q2 / 25.47 / 38.345 / .355 / .873
q3 / 25.68 / 37.226 / .436 / .871
q4 / 25.56 / 37.765 / .398 / .872
q5 / 25.45 / 38.517 / .349 / .873
q6 / 25.37 / 39.496 / .207 / .875
q7 / 25.48 / 38.117 / .400 / .872
q8 / 25.70 / 36.775 / .509 / .870
q9 / 25.59 / 37.935 / .348 / .873
q10 / 25.53 / 37.539 / .467 / .871
q11 / 25.59 / 37.734 / .386 / .873
q12 / 25.39 / 38.294 / .558 / .871
q13 / 25.73 / 37.958 / .298 / .875
q14 / 25.47 / 38.949 / .213 / .876
q15 / 25.73 / 37.032 / .457 / .871
q16 / 25.52 / 38.520 / .273 / .875
q17 / 25.62 / 36.868 / .530 / .869
q18 / 25.55 / 37.349 / .487 / .870
q19 / 25.63 / 37.496 / .406 / .872
q20 / 25.46 / 38.116 / .429 / .872
q21 / 25.97 / 38.711 / .176 / .878
q22 / 25.44 / 38.423 / .385 / .873
q23 / 25.61 / 37.782 / .363 / .873
q24 / 25.59 / 37.129 / .498 / .870
q25 / 25.64 / 37.843 / .341 / .874
q26 / 25.69 / 36.847 / .501 / .870
q27 / 25.45 / 38.008 / .468 / .871
q28 / 25.85 / 37.661 / .338 / .874
q29 / 25.50 / 37.876 / .430 / .872
q30 / 25.74 / 38.113 / .269 / .876
q31 / 25.59 / 37.976 / .340 / .874
q32 / 25.75 / 36.898 / .474 / .871
q33 / 25.49 / 38.534 / .291 / .874
q34 / 25.51 / 38.037 / .387 / .873
q35 / 25.52 / 37.674 / .452 / .871
This is about all we typically get from SPSS when we analyze a test.
The Rasch analysis
The Rasch control file
&INST ; initial line (can be omitted)
TITLE = "Bond & Fox BLOT data: Chapter 4"
PERSON = Person ; persons are ...
ITEM = Item ; items are ...
ITEM1 = 5 ; column of response to first item in data record
NI = 35 ; number of items
NAME1 = 1 ; column of first character of person label
NAMELEN = 3 ; length of person identifying label
XWIDE = 1 ; number of columns per item response
CODES = 10 ; valid codes in data file
UIMEAN = 0 ; item mean for local origin
USCALE = 1 ; user scaling for logits
UDECIM = 2 ; reported decimal places for user scaling
TOTAL = Yes ; show total raw scores
CHART = Yes ; produce across-pathway picture
MNSQ = No ; use Standardized fit statistics
CONVERGE= L ; Convergence decided by logit change
LCONVERGE=.00001 ; Set logit convergence tight because of anchoring
IAFILE = * ; Item anchor file to preset the difficulty of an item
4 0 ; Item 4 exactly at 0 logit point.
* ; End of anchor list
&END
01 Negation (to negate identity) ; Item labels courtesy of Trevor Bond
02 Reciprocal (to negate identity)
.
.
.
35 Coordination of two systems of reference
END NAMES
001 11111111110110101101011111111011111
002 11111111111111111111111111101111111
003 11010111111111011111011111101011111
Mike – demo the analysis here.
The Rasch Item Map
TABLE 12.2 Bond & Fox BLOT data: Chapter 4 ZOU032WS.TXT Mar 24 18:13 2012
INPUT: 150 Persons 35 Items MEASURED: 150 Persons 35 Items 2 CATS 1.0.0
------
Persons MAP OF Items
<more>|<rare>
4 ######### +
|
|
|
|
|
#### |
|
3 +
S|
.### |
|
|
.######### | 21 Correlative + negation > equilibrium
|
### |
2 +
.### |T
|
.## M| 28 Non-implication
|
.#### |
###### |
.##### | 30 Equivalence
32 Negation of reciprocal implication
1 +S 13 Reciprocal exclusion
15 Reciprocal implication
.## | 08 Correlations
#### | 03 Implication
26 Complete affirmation
.# |
.# | 19 Reciprocal (to cause disequilibrium)
25 Complete negation
#### | 17 Identity (to negate reciprocal)
23 Correlative + identity > disequilibrium
### S| 24 Coordination of two systems of reference
# | 09 Conjunction
11 Conjunctive negation
31 Negation of q
0 +M 04 Incompatibility
18 Negation (to negate correlative)
# |
. | 10 Disjunction
16 Reciprocal (to negate identitiy)
35 Coordination of two systems of reference
. | 34 Coordination of two systems of reference
. | 29 Affirmation of q
33 Probability
. | 07 Correlations
.# | 01 Negation (to negate identity)
02 Reciprocal (to negate identity)
14 Probability
. | 20 Negation (to cause disequilibrium)
27 Negation of p
-1 T+S 05 Multiplicative compensation
. | 22 Reciprocal + negation > disequilibrium
|
. |
|
|
|
|T 12 Affirmation of p
-2 +
. |
|
|
| 06 Correlations
|
|
|
-3 +
<less>|<frequ>
EACH '#' IS 2.
Item characteristics . . . Item STATISTICS ordered by Measure
TABLE 13.1 Bond & Fox BLOT data: Chapter 4 ZOU527WS.TXT Mar 25 11:43 2012
INPUT: 150 Persons 35 Items MEASURED: 150 Persons 35 Items 2 CATS 1.0.0
------
Person: REAL SEP.: 2.04 REL.: .81 ... Item: REAL SEP.: 3.79 REL.: .93
Item STATISTICS: MEASURE ORDER
+------+
|ENTRY TOTAL MODEL| INFIT | OUTFIT |PTMEA|EXACT MATCH| |
|NUMBER SCORE COUNT MEASURE S.E. |MNSQ ZSTD|MNSQ ZSTD|CORR.| OBS% EXP%| Item |
|------+------+------+-----+------+------|
| 21 54 150 2.40 .20|1.27 2.6|1.75 3.7| .32| 69.4 74.8| 21 Correlative |
| 28 73 150 1.68 .19|1.12 1.4|1.23 1.7| .43| 70.1 71.9| 28 Non-implicat|
| 32 87 150 1.17 .19| .96 -.5| .85 -1.1| .53| 72.8 71.2| 32 Negation of |
| 30 89 150 1.10 .19|1.19 2.3|1.15 1.0| .38| 63.3 71.4| 30 Equivalence |
| 13 91 150 1.03 .19|1.16 2.0|1.32 2.0| .37| 66.7 71.7| 13 Reciprocal e|
| 15 91 150 1.03 .19| .97 -.4| .84 -1.1| .52| 73.5 71.7| 15 Reciprocal i|
| 8 95 150 .88 .19| .91 -1.1|1.00 .1| .52| 75.5 72.5| 08 Correlations|
| 26 97 150 .80 .20| .90 -1.3| .75 -1.6| .55| 72.8 72.9| 26 Complete aff|
| 3 98 150 .76 .20| .98 -.2| .90 -.5| .49| 73.5 73.1| 03 Implication |
| 25 104 150 .52 .20|1.07 .8|1.26 1.3| .40| 74.1 74.9| 25 Complete neg|
| 19 105 150 .48 .20|1.01 .2|1.05 .3| .44| 74.8 75.2| 19 Reciprocal (|
| 17 107 150 .40 .20| .87 -1.4| .75 -1.3| .54| 78.2 75.8| 17 Identity (to|
| 23 108 150 .36 .21|1.06 .7| .92 -.3| .42| 70.7 76.2| 23 Correlative |
| 24 111 150 .23 .21| .89 -1.1|1.03 .2| .49| 82.3 77.4| 24 Coordination|
| 9 112 150 .18 .21|1.07 .7| .97 .0| .40| 76.2 77.8| 09 Conjunction |
| 11 112 150 .18 .21|1.02 .3| .96 -.1| .42| 80.3 77.8| 11 Conjunctive |
| 31 112 150 .18 .21|1.07 .7|1.55 2.2| .36| 78.9 77.8| 31 Negation of |
| 4 116 150 .00A .22|1.00 .0| .88 -.4| .43| 80.3 79.8| 04 Incompatibil|
| 18 117 150 -.05 .22| .90 -.9| .74 -1.0| .49| 79.6 80.3| 18 Negation (to|
| 10 120 150 -.20 .23| .92 -.7| .68 -1.2| .47| 84.4 81.8| 10 Disjunction |
| 16 122 150 -.31 .23|1.13 1.0|1.03 .2| .33| 79.6 82.9| 16 Reciprocal (|
| 35 122 150 -.31 .23| .93 -.5| .73 -.9| .45| 83.7 82.9| 35 Coordination|
| 34 124 150 -.42 .24|1.00 .1| .79 -.6| .41| 81.6 83.9| 34 Coordination|
| 29 125 150 -.48 .24| .94 -.4| .71 -.9| .43| 86.4 84.5| 29 Affirmation |
| 33 126 150 -.53 .25|1.10 .7| .93 -.1| .33| 81.0 85.0| 33 Probability |
| 7 128 150 -.66 .25| .97 -.1| .65 -1.0| .41| 85.7 86.0| 07 Correlations|
| 2 129 150 -.72 .26|1.01 .1| .75 -.6| .37| 85.0 86.6| 02 Reciprocal (|
| 14 129 150 -.72 .26|1.15 1.0|1.32 .9| .25| 85.0 86.6| 14 Probability |
| 1 130 150 -.79 .26| .98 .0| .69 -.8| .39| 86.4 87.1| 01 Negation (to|
| 20 131 150 -.86 .27| .91 -.5| .81 -.4| .40| 87.1 87.7| 20 Negation (to|
| 27 132 150 -.94 .27| .85 -.8| .62 -.9| .43| 89.8 88.3| 27 Negation of |
| 5 133 150 -1.01 .28| .98 -.1| .76 -.5| .35| 90.5 88.9| 05 Multiplicati|
| 22 134 150 -1.09 .29| .91 -.4|1.69 1.4| .35| 90.5 89.5| 22 Reciprocal +|
| 12 141 150 -1.81 .36| .69 -1.1| .24 -1.5| .46| 94.6 94.0| 12 Affirmation |
| 6 145 150 -2.49 .47|1.06 .3| .83 .0| .20| 96.6 96.6| 06 Correlations|
|------+------+------+-----+------+------|
| MEAN 109.9 147.0 .00 .24|1.00 .1| .95 -.1| | 80.0 80.5| |
| S.D. 19.5 .0 .97 .05| .11 1.0| .31 1.2| | 7.8 6.9| |
+------+
The key quantities in the table are
1. Measure – the difficulty of the item.
2. S.E. – the standard error of the estimate of the item’s difficulty. Note that the SEs of the more difficult items are smaller than those of the easy items. This is because there were too few respondents of low ability, resulting in nearly everyone getting these items correct, so the proportions of the sample getting them correct were very close to 1. When proportions are close to 1, larger numbers of persons are required for those proportions to be stable, so the proportions near 1 are not as stable as the proportions closer to .5, making the standard errors larger.
3. Infit – the mean of squared residuals with extra weighting given to persons whose abilities were close to the item difficulties. According to text, Rasch analysts give this more weight.
4. Outfit – the mean of squared residuals with all residuals weighted equally.
5. Note that Item 4 was anchored at difficulty = 0.
Item Characteristics . . . Items FIT GRAPH ordered by Measure
Output Tables -> 13. Item: measure -> Scroll down to Table 13.2.
TABLE 13.2 Bond & Fox BLOT data: Chapter 4 ZOU527WS.TXT Mar 25 11:43 2012
INPUT: 150 Persons 35 Items MEASURED: 150 Persons 35 Items 2 CATS 1.0.0
------
Items FIT GRAPH: MEASURE ORDER
+------+
| ENTRY | MEASURE | INFIT STANDARDIZED | OUTFIT STANDARDIZED | |
| NUMBER| - + |-3 -2 -1 0 1 2 3 |-3 -2 -1 0 1 2 3 | Items |
|------+------+------+------+------|
| 21| *| : . :* | : . : *| 21 Correlative + negation > equilibrium |
| 28| * | : . * : | : . *: | 28 Non-implication |
| 32| * | : *. : | : * . : | 32 Negation of reciprocal implication |
| 30| * | : . * | : . * : | 30 Equivalence |
| 13| * | : . *: | : . * | 13 Reciprocal exclusion |
| 15| * | : *. : | : * . : | 15 Reciprocal implication |
| 8| * | : * . : | : * : | 08 Correlations |
| 26| * | : * . : | : * . : | 26 Complete affirmation |
| 3| * | : * : | : *. : | 03 Implication |
| 25| * | : . * : | : . * : | 25 Complete negation |
| 19| * | : * : | : * : | 19 Reciprocal (to cause disequilibrium) |
| 17| * | : * . : | : * . : | 17 Identity (to negate reciprocal) |
| 23| * | : .* : | : * : | 23 Correlative + identity > disequilibrium |
| 24| * | : * . : | : * : | 24 Coordination of two systems of reference|
| 9| * | : .* : | : * : | 09 Conjunction |
| 11| * | : * : | : * : | 11 Conjunctive negation |
| 31| * | : . * : | : . * | 31 Negation of q |
| 4| A | : * : | : *. : | 04 Incompatibility |
| 18| * | : * . : | : * . : | 18 Negation (to negate correlative) |
| 10| * | : *. : | : * . : | 10 Disjunction |
| 16| * | : . * : | : * : | 16 Reciprocal (to negate identitiy) |
| 35| * | : *. : | : * . : | 35 Coordination of two systems of reference|
| 34| * | : * : | : *. : | 34 Coordination of two systems of reference|
| 29| * | : *. : | : * . : | 29 Affirmation of q |
| 33| * | : . * : | : * : | 33 Probability |
| 7| * | : * : | : * . : | 07 Correlations |
| 2| * | : * : | : *. : | 02 Reciprocal (to negate identity) |
| 14| * | : . * : | : . * : | 14 Probability |
| 1| * | : * : | : * . : | 01 Negation (to negate identity) |
| 20| * | : *. : | : *. : | 20 Negation (to cause disequilibrium) |
| 27| * | : * . : | : * . : | 27 Negation of p |
| 5| * | : * : | : *. : | 05 Multiplicative compensation |
| 22| * | : *. : | : . * : | 22 Reciprocal + negation > disequilibrium |
| 12| * | : * . : | : * . : | 12 Affirmation of p |
| 6|* | : * : | : * : | 06 Correlations |
+------+
Item Characteristics – the bubble plot . . .
This plot show the same information as above, but it’s prettier.
Plots -> Bubble Chart -> Items (columns in data) -> Entry number
For this plot, I chose Items only and used Entry Numbers to identify items.
A comparison of 3 ways of scoring the BLOT – Summated score, log odds, and Rasch.Start here on 3/27/13.
To make the comparison, I had to put the Rasch Person measures into an SPSS file.
Output Tables -> 17. Person: entry.
I then copied the 150 lines of the table with the person entries and pasted them into Word. I then Alt+Selected the measure column and pasted it into a column in SPSS.
In SPSS I created a “rough” Rasch score for each person, logoddsscore, using the following syntax. (Recall it’s ln(score/(total possible - score)).
compute logoddsscore = ln(totalscore/(35-totalscore)).
Correlations of totalscore, logoddsscore, and raschscore
The correlations of the three measures are quite high. In fact, the correlation of the raschscore and logoddsscore is 1.000 to three decimal places. Its actual value to 6 decimal places is .999664.
Of course, this tells us that for some datasets we don’t need the program to compute person measures. For those datasets we can simply compute the ln(score/(total possible-score)) and use it.
The disadvantage of this is that we don’t get the other stuff that the BF program gives us. One advantage of using the program is that it will give us an estimate of the Rasch value for persons whose total score is perfect or 0, something the log method cannot do.
Dot plots of the three measures . . .
Note that for the summated score, totalscore, the best performers were just a little better than the crowd but were considerably better than the crowd for both logoddsscore and raschscore. This is in keeping with the notion that Rasch measurement lengthens the tails of distributions, spreading out the best and worst performers. This spreading was most noticeable among the best performers for these data.
Scatterplots of the three measures. The plots involving logoddsscore do not include the 3 persons whose totalscore was 35.
The Wonderlic Personnel Test Form II given to UTC students.
The Wonderlic Personnel Test (WPT) Form II considered here is a 50-item paper and pencil test designed to measure overall cognitive ability (g). It is a timed test. For the paper and pencil version respondents are given 12 minutes to complete as many items as possible.
From the Wonderlic manual,
“The WPT and SLE (Scholastic Level Exam) are short form tests of general cognitive ability. Often referred to as general intelligence, or “g”, cognitive ability is a term that is used to describe the level at which an individual learns, understands instructions and solves problems.” – p 5
“The score is the total number of correct answers.” P. 9
If you’re interested, median scores for populations given in the manual printed in 2002 are
1992 Total Applicant Population N=118549 / Adult Working Population / HS GradsAge 16-30 / Coll Grads
Ages 20-30
3rd Quartile / 26 / 27 / 25 / 34
Median / 21 / 22 / 21 / 30
1st Quartile / 16 / 17 / 16 / 25
SD / 7.12 / 7.6 / 6.8 / 6.3
For our mostly Frosh research sample . . ., Mean = 22.02 and SD = 5.401.
The dataset is balancedscale_120428.sav.
Some questions we might ask
1. Are all of the WPT items appropriate?
a. Does it correlate with the total score?
b. Is the pattern of correctness / incorrectness appropriate across persons?
2. Are the persons and items matched for our data? (A question we’d never have asked before Rasch.)
a. Are there sufficient numbers of difficult items, so differences between high scorers can be measured?
b. Are there sufficient numbers of easy items, so differences between low scorers can be measured?
c. are there sufficient numbers of items at all difficulty levels?
3. Are the person ability (WPT scores) that we’re using appropriate, or should we use Rasch scores?
The SPSS Analysis
Reliability StatisticsCronbach's Alpha / N of Items
.762 / 50
Item-Total Statistics
Scale Mean if Item Deleted / Scale Variance if Item Deleted / Corrected Item-Total Correlation / Cronbach's Alpha if Item Deleted
wpt1 / 21.26 / 27.911 / .237 / .758
wpt2 / 21.11 / 28.851 / .076 / .763
wpt3 / 21.39 / 26.970 / .391 / .750
wpt4 / 21.14 / 28.404 / .189 / .759
wpt5 / 21.07 / 28.912 / .091 / .762
wpt6 / 21.42 / 28.000 / .179 / .761
wpt7 / 21.34 / 27.886 / .215 / .759
wpt8 / 21.15 / 28.106 / .270 / .757
wpt9 / 21.30 / 28.163 / .168 / .761
wpt10 / 21.62 / 28.734 / .037 / .767
wpt11 / 21.31 / 28.898 / .013 / .767
wpt12 / 21.10 / 28.541 / .188 / .760
wpt13 / 21.55 / 27.117 / .346 / .752
wpt14 / 21.08 / 28.603 / .195 / .760
wpt15 / 21.20 / 28.228 / .194 / .759
wpt16 / 21.14 / 28.414 / .186 / .759
wpt17 / 21.36 / 28.106 / .166 / .761
wpt18 / 21.65 / 27.741 / .235 / .758
wpt19 / 21.75 / 27.995 / .207 / .759
wpt20 / 21.30 / 27.887 / .228 / .758
wpt21 / 21.28 / 28.720 / .054 / .765
wpt22 / 21.90 / 28.127 / .275 / .757
wpt23 / 21.17 / 27.966 / .284 / .756
wpt24 / 21.45 / 27.546 / .265 / .756
wpt25 / 21.64 / 26.924 / .398 / .750
wpt26 / 21.59 / 26.936 / .386 / .750
wpt27 / 21.64 / 28.251 / .132 / .763
wpt28 / 21.53 / 27.958 / .181 / .760
wpt29 / 21.45 / 27.663 / .242 / .758
wpt30 / 21.25 / 27.280 / .390 / .751
wpt31 / 21.59 / 26.800 / .413 / .749
wpt32 / 21.96 / 28.383 / .280 / .757
wpt33 / 21.82 / 28.639 / .085 / .764
wpt34 / 21.71 / 28.042 / .186 / .760
wpt35 / 21.91 / 27.631 / .443 / .752
wpt36 / 21.74 / 26.865 / .453 / .748
wpt37 / 21.96 / 28.120 / .383 / .755
wpt38 / 21.67 / 27.385 / .310 / .754
wpt39 / 21.95 / 28.759 / .129 / .761
wpt40 / 21.94 / 28.401 / .236 / .758
wpt41 / 21.96 / 28.637 / .182 / .760
wpt42 / 21.86 / 28.225 / .211 / .759
wpt43 / 22.01 / 29.063 / .092 / .762
wpt44 / 21.80 / 28.121 / .200 / .759
wpt45 / 21.99 / 28.702 / .243 / .759
wpt46 / 22.01 / 28.980 / .247 / .761
wpt47 / 21.88 / 28.455 / .163 / .760
wpt48 / 22.02 / 29.170 / .000 / .763
wpt49 / 22.02 / 29.170 / .000 / .763
wpt50 / 22.02 / 29.170 / .000 / .763
Data files -> BondFoxChapterBSWPT.txt
The Rasch Control file
&INST
Title = “BalancedScaleQuestionnaireWPTdata”
ITEM1 = 5
NI = 50
NAME1 = 1
NAMELEN = 4
XWIDE = 1
CODES = 10
Total = Yes
&End
ENDLABELS
500111111101011111110101001011011100001101001000000000
206 data lines follow.
The Rasch Analyses – Item Map
TABLE 12.2 BalancedScaleQuestionnaireWPTdata ZOU839WS.TXT Mar 25 15:21 2012
INPUT: 206 PERSONS 50 ITEMS MEASURED: 206 PERSONS 50 ITEMS 2 CATS 1.0.0
------
PERSONS MAP OF ITEMS
<more>|<rare>
6 + I0048 I0049 I0050
|
|
| I0046
|
|
5 +
|
| I0043
|
|
|T
4 +
|
|
. | I0045
|
|
3 +
|
| I0032 I0037 I0039 I0041
|
. | I0040
|S
2 + I0022 I0035
. |
| I0047
. | I0042
## T|
. | I0033 I0044
1 .## +
# | I0019 I0036
## |
.##### S| I0034
###### | I0018 I0038
########## | I0010 I0025 I0027
0 ######## +M I0026 I0031
######## | I0013
######## M| I0028
.##### |
##### | I0024 I0029
######## | I0006
-1 ############ + I0003 I0017
.##### S| I0007
#### | I0009 I0011
.## | I0020 I0021
.### | I0001 I0030
. |
-2 # T+ I0015
|S
| I0023
| I0004 I0008 I0016
|
| I0002
-3 + I0012
|
| I0014
| I0005
|
|
-4 +
<less>|<frequ>
EACH '#' IS 2.
Item Information . . . Item STATISTICS ordered by Measure
TABLE 13.1 BalancedScaleQuestionnaireWPTdata ZOU839WS.TXT Mar 25 15:21 2012
INPUT: 206 PERSONS 50 ITEMS MEASURED: 206 PERSONS 50 ITEMS 2 CATS 1.0.0
------
PERSON: REAL SEP.: 1.75 REL.: .75 ... ITEM: REAL SEP.: 7.45 REL.: .98
ITEM STATISTICS: MEASURE ORDER
+------+
|ENTRY TOTAL MODEL| INFIT | OUTFIT |PTMEA|EXACT MATCH| |
|NUMBER SCORE COUNT MEASURE S.E. |MNSQ ZSTD|MNSQ ZSTD|CORR.| OBS% EXP%| ITEM |
|------+------+------+-----+------+------|
| 48 0 206 6.66 1.83| MAXIMUM ESTIMATED MEASURE | | I0048|
| 49 0 206 6.66 1.83| MAXIMUM ESTIMATED MEASURE | | I0049|
| 50 0 206 6.66 1.83| MAXIMUM ESTIMATED MEASURE | | I0050|
| 46 1 206 5.44 1.01| .79 .1| .04 -1.8| .32| 99.5 99.5| I0046|
| 43 2 206 4.72 .72|1.05 .3| .65 -.2| .10| 99.0 99.0| I0043|
| 45 6 206 3.55 .43| .91 -.1| .61 -.6| .29| 97.1 97.1| I0045|
| 32 13 206 2.68 .30| .92 -.2| .68 -.9| .34| 94.2 93.9| I0032|
| 37 13 206 2.68 .30| .84 -.6| .54 -1.5| .44| 94.2 93.9| I0037|
| 41 13 206 2.68 .30| .96 -.1|1.20 .7| .24| 94.2 93.9| I0041|
| 39 14 206 2.59 .29|1.12 .6| .98 .0| .17| 92.7 93.4| I0039|
| 40 17 206 2.37 .26| .99 .0| .97 .0| .28| 91.7 92.0| I0040|
| 35 22 206 2.05 .24| .83 -1.0| .56 -2.0| .50| 90.3 89.7| I0035|
| 22 24 206 1.94 .23| .95 -.3| .88 -.5| .34| 89.3 88.7| I0022|
| 47 28 206 1.75 .21|1.04 .3|1.11 .6| .24| 86.9 86.9| I0047|
| 42 32 206 1.58 .20|1.02 .2|1.04 .3| .28| 85.0 85.0| I0042|
| 33 42 206 1.20 .18|1.15 1.4|1.26 1.7| .15| 77.2 80.6| I0033|
| 44 45 206 1.11 .18|1.03 .4|1.08 .6| .28| 77.7 79.4| I0044|
| 19 56 206 .78 .17|1.04 .6|1.07 .6| .29| 73.8 75.0| I0019|
| 36 57 206 .75 .17| .85 -2.0| .79 -2.0| .52| 80.1 74.6| I0036|
| 34 64 206 .56 .16|1.06 .9|1.15 1.5| .26| 70.9 71.9| I0034|
| 38 73 206 .34 .16| .96 -.6| .97 -.3| .39| 71.8 69.2| I0038|
| 18 76 206 .27 .15|1.03 .5|1.03 .4| .32| 66.5 68.4| I0018|
| 25 78 206 .22 .15| .90 -1.7| .86 -1.8| .47| 73.3 68.0| I0025|
| 27 78 206 .22 .15|1.11 1.9|1.15 1.9| .22| 62.6 68.0| I0027|
| 10 82 206 .13 .15|1.18 3.2|1.28 3.4| .13| 61.7 67.0| I0010|
| 26 89 206 -.03 .15| .91 -1.8| .88 -1.7| .46| 69.9 65.7| I0026|
| 31 89 206 -.03 .15| .89 -2.2| .86 -2.0| .48| 69.9 65.7| I0031|
| 13 96 206 -.19 .15| .94 -1.3| .92 -1.2| .42| 69.4 65.0| I0013|
| 28 101 206 -.30 .15|1.07 1.5|1.08 1.2| .27| 61.2 64.8| I0028|
| 24 118 206 -.68 .15|1.00 .0| .99 -.1| .35| 66.0 65.6| I0024|
| 29 118 206 -.68 .15|1.00 .1|1.06 .8| .32| 68.0 65.6| I0029|
| 6 124 206 -.82 .15|1.07 1.3|1.04 .6| .27| 63.1 66.4| I0006|
| 3 130 206 -.96 .15| .89 -2.0| .85 -1.7| .46| 70.9 67.5| I0003|
| 17 135 206 -1.08 .16|1.06 1.1|1.07 .7| .25| 65.5 68.7| I0017|
| 7 139 206 -1.18 .16|1.02 .3|1.01 .2| .30| 69.4 69.9| I0007|
| 11 146 206 -1.35 .16|1.15 2.1|1.41 3.1| .10| 68.4 72.2| I0011|
| 9 148 206 -1.41 .16|1.04 .5|1.23 1.7| .24| 72.3 72.9| I0009|
| 20 149 206 -1.43 .16|1.00 .0| .98 -.1| .30| 71.8 73.3| I0020|
| 21 152 206 -1.52 .17|1.13 1.6|1.23 1.6| .14| 72.3 74.5| I0021|
| 1 156 206 -1.63 .17| .99 -.1| .96 -.3| .31| 75.7 76.1| I0001|
| 30 159 206 -1.72 .17| .87 -1.5| .77 -1.6| .44| 77.7 77.4| I0030|
| 15 169 206 -2.04 .19|1.00 .0| .98 -.1| .26| 82.0 82.0| I0015|
| 23 175 206 -2.27 .20| .94 -.5| .78 -1.0| .34| 85.0 84.9| I0023|
| 8 180 206 -2.49 .22| .93 -.4| .78 -.9| .32| 87.4 87.4| I0008|
| 4 181 206 -2.54 .22|1.00 .0| .88 -.5| .24| 87.9 87.9| I0004|
| 16 181 206 -2.54 .22|1.00 .0| .93 -.2| .24| 87.9 87.9| I0016|
| 2 187 206 -2.86 .25|1.05 .3|1.10 .4| .13| 90.8 90.8| I0002|
| 12 189 206 -2.99 .26| .96 -.1| .92 -.2| .23| 91.7 91.7| I0012|
| 14 193 206 -3.29 .29| .97 .0| .73 -.7| .23| 93.7 93.7| I0014|
| 5 196 206 -3.58 .33|1.02 .2| .90 -.1| .13| 95.1 95.1| I0005|
|------+------+------+-----+------+------|
| MEAN 90.7 206.0 .40 .33| .99 .1| .94 .0| | 79.6 79.7| |
| S.D. 65.0 .0 2.57 .41| .09 1.1| .23 1.3| | 11.5 11.2| |
+------+
The very difficult items were not even responded to by most of the participants, so their SEs are huge. Luckily, since no participants even got to them, that probably won’t be a problem for our sample.
Item Information . . . Bubble chart
The span of difficulty values is much greater for these items (-5 to +7) than for the BLOT items in the previous example, for which it was -3 to +3.
I would say that if I were to “look” at this test for ways to improve it, I would begin with items 3, 31, 36, 10, and 11, for all of which there was inconsistency in the proportions of low and high ability persons who got them correct.
This analysis skirts the issue of whether an item should be included in the analysis if it was not responded to. That is, because the test it timed, most people do not respond to all items. In fact, not many people got to items 31 and 36, so most of the “incorrect” responses were counted as such because persons didn’t get to them. This is something that the BF program does not know about – all it knows is that these items were counted as being “incorrect”.
Comparison of the 3 ways of scoring – Summated vs. log odds vs Rasch.
(These graphs were created after I copied and pasted the 206 Rasch measures into the SPSS file.)
Log odds vs Total Score (compute wptlogoddsscore = ln(wpttotscore/(50-wpttotscore)).
Rasch vs. Total Score
Rasch vs. Log odds
PSY 5950 L13 - 1