Supplementary Information
Response of microbial diversity to C: N: P stoichiometry in fine root and microbial biomass following afforestation
1. ChengjieRen
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Email:
2. Ji Chen
Center for Ecological and Environmental Sciences, Key Laboratory for Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi’an, 710072, China
Email:
3. Jian Deng
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Email:
4. Fazhu Zhao
College of Urban and Environmental Science, Northwest University, Xi'an, Shaanxi, China
712100 Shaanxi, China
Email:
5. Xinhui Han (Corresponding author)
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Tel:13892872667
Email:
6.Gaihe Yang (Corresponding author)
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Tel: 13709129773
Email:
7. Xiaogang Tong
College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100 Shaanxi, China.
Email:
8. YongzhongFeng
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Email:
9. Shelby Shelton
Milken Institute of Public Health, The George Washington University, Washington, 20052, USA
Email:
10. GuangxinRen
College of Agronomy, Northwest A&F University, Yangling, 712100 Shaanxi, China
The Research Center of Recycle Agricultural Engineering and Technology of Shaanxi Province, Yangling 712100 Shaanxi, China
Email:
For field sampling, environmental parameter measurements and MiSeqsequencing, please contact:
Fig. S1Rarefaction curves for Shannon index were calculated using Mothur (v1.27.0) with reads normalized to 10,000 for bacteria (Fig. S1a) and to 19,830 for fungi (Fig.S1b) in each sample considering a 97% sequence identity level.
Fig. S2 Distribution of 16S rRNA sequences across bacterial taxa (class and order level)in thethreeland use typesand at twosampling periods.Differentletters indicate significant differences (ANOVA, P < 0.05, Tukey’s HSDpost-hoc analysis) amongthree land use in June and October. The abbreviations are for the class and order level.
The class level (Fig. S2a): Alphaproteobacteria (Alpha), Betaproteobacteria (Betap), Gammaproteobacteria (Gamma), Deltaproteobacteria (Delta), Sphingobacteriia (Sphin), Acidimicrobiia (Acidi), Cytophagia (Cytop), Anaerolineae (Anaer), Bacilli (Bacil), Thermomicrobia (Therm), Flavobacteriia (Flavo), and Nitrospira (Nitro).
The order Level (Fig. S2b): Rhizobiales (Rhizo), Solirubrobacterales (Solir),Xanthomonadales(Xanth), Burkholderiales (Burkh), Nitrosomonadales (Nitro), Gaiellales (Gaiel) Sphingobacteriales(Sphin),Rhodospirillales (Rhodo),Myxococcales (Myxoc),Propionibacteriales (Propio),Acidimicrobiales (Acidi)Cytophagales(Cytop),Micrococcal(Micro),Pseudonocardiales(Pseud),Gemmatimonadales(Gemma),Rhodobacterales (Rhodo), Frankiales (Frank), Micromonosporales (Micro),Desulfobacterales (Desul), Flavobacteriales (Flavo), Chloroflexales (Chlor), Chromatiales (Chrom), Streptomycetales (Strep),Sphingomonadales (Sphin), Corynebacteriales (Coryn), Chlorobiales(Chlor), Desulfurellales (Desul),Legionellales (Legio),Lactobacillales (Lacto), Pseudomonadales (Pseud),Opitutales(Opitu), and Streptosporangiales (Strep)
.
Fig. S3 Distribution of ITS sequences across fungaltaxa (class and order level)in the threeland use types.Differentletters indicate significant differences (ANOVA, P < 0.05, Tukey’s HSDpost-hoc analysis) amongthree land use in June and October. The abbreviations are for the class and order level.
The class Level: Dothideomycetes(Dothi), Sordariomycetes (Sorda), Eurotiomycetes (Eurot),Leotiomycetes (Leoti),Tremellomycetes (Treme), Agaricomycetes (Agari), Orbiliomycetes (Orbil), and Pezizomycetes (Peziz)
The order Level: Agaricales (Agari), Xylariales (Xylar),Pezizales (Peziz), Cantharellales (Canth), Sebacinales (Sebac), Microascales (Micro), Cystofilobasidiales (Cysto), Onygenales (Onyge), Verrucariales (Verru),Botryosphaeriales (Botry), Trichosphaeriales (Trich), Orbiliales (Orbil), Agaricostilbales (Agari), and Glomerellales (Glome).
.
Fig. S4Ordination plots of the redundancy analysis (RDA) to identify the relationships between the abundance of bacterialtaxa (Black arrows) and soil properties (Red arrows) at the class level (Fig. S4a) andthe order level (Fig. S4b),respectively.The abbreviations are for the class and the order level.
The class level (Fig. S4a): Alphaproteobacteria (Alpha), Betaproteobacteria (Betap), Gammaproteobacteria (Gamma), Deltaproteobacteria (Delta), Sphingobacteriia (Sphin), Acidimicrobiia (Acidi), Cytophagia (Cytop), Anaerolineae (Anaer), Bacilli (Bacil), Thermomicrobia (Therm), Flavobacteriia (Flavo), and Nitrospira (Nitro).
The order Level (Fig. S4b): Rhizobiales (Rhizo), Solirubrobacterales (Solir),Xanthomonadales(Xanth), Burkholderiales (Burkh), Nitrosomonadales (Nitro), Gaiellales (Gaiel) Sphingobacteriales(Sphin),Rhodospirillales (Rhodo),Myxococcales (Myxoc),Propionibacteriales (Propio),Acidimicrobiales (Acidi)Cytophagales(Cytop),Micrococcal(Micro),Pseudonocardiales(Pseud),Gemmatimonadales(Gemma),Rhodobacterales (Rhodo), Frankiales (Frank), Micromonosporales (Micro), Desulfobacterales (Desul), Flavobacteriales (Flavo), and Chloroflexales (Chlor), Chromatiales (Chrom), Streptomycetales (Strep),Sphingomonadales (Sphin), Corynebacteriales (Coryn), Chlorobiales(Chlor), Desulfurellales (Desul),Legionellales (Legio),Lactobacillales (Lacto), Pseudomonadales (Pseud),Opitutales(Opitu), and Streptosporangiales (Strep)
Fig. S5Ordination plots of the redundancy analysis (RDA) to identify the relationships between the abundance of fungal taxa (Black arrows) and soil properties (Red arrows)at theclass level (Fig. S5a) and the order level (Fig. S5b),respectively.The abbreviations are for the class and the order level.
The class Level: Dothideomycetes(Dothi), Sordariomycetes (Sorda), Eurotiomycetes (Eurot),Leotiomycetes (Leoti),Tremellomycetes (Treme), Agaricomycetes (Agari), Orbiliomycetes (Orbil), and Pezizomycetes (Peziz)
The order Level: Agaricales (Agari), Xylariales (Xylar),Pezizales (Peziz), Cantharellales (Canth), Sebacinales (Sebac), Microascales (Micro), Cystofilobasidiales (Cysto), Onygenales (Onyge), Verrucariales (Verru),Botryosphaeriales (Botry), Trichosphaeriales (Trich), Orbiliales (Orbil), Agaricostilbales (Agari), and Glomerellales (Glome).
.
Table S1Changes in C, N, P contents in soil at 0-20cm afterafforestation.
Factors / June in 2009a / June in 2011a / June in 2013aLanduseb / AL / CK / RP / AL / CK / RP / AL / CK / RP
C (g/kg)c / 2.347 / 5.823 / 7.971 / 2.461 / 6.176 / 8.386 / 2.909 / 6.506 / 9.006
N (g/kg)d / 0.430 / 0.547 / 0.678 / 0.434 / 0.580 / 0.742 / 0.471 / 0.612 / 0.819
P (g/kg)e / 0.462 / 0.558 / 0.644 / 0.515 / 0.583 / 0.695 / 0.523 / 0.622 / 0.738
a means that specific sampling time in three land use; Landuseb=three land use types, including Robiniapseudoacacia L., CaraganaKorshinskiiKom and Abandoned land; C (g/kg)c= soil organic C; N (g/kg)d = soil total N; P (g/kg)e = soil total P.
Table S2 Characteristics of thethree landuse
Land use types / Location / elevation/m / Slope aspect/° / Mainly VegetationTypes of Herb / Important valuea
Robiniapseudoacacia L.
(RP40a) / 36.87N, 109.34E / 1320 / NbyE45 / Ulmuspumila L
Pennisetumcentrasiaticum
Poasphondylodes
Drabanemorosa
Tripoliumvulgare
Melicascabrosa / 10.09
8.66
8.22
6.73
6.47
5.87
5.81
CaraganaKorshinskiiKom
(CK40a) / 36.87 N, 109.35 E / 1318 / NbyE10 / Tripoliumvulgare
Heteropappusaltaicus
Roegneriakamoji
Dendranthemaindicum
Rubiacordifolia
Melicascabrosa
Viola dissecta / 14.91
12.33
9.57
8.90
7.28
5.17
5.04
Abandoned land
(AL40a) / 36.87 N, 109.35 E / 1308 / NbyE30 / Bidenspilosa
Roegneriakamoji
Lespedeza davurica
Tripoliumvulgare
Thermopsislupinoides
Artemisia scoparia
Bothriochloaischaemum
Phragmitesaustralis / 8.22
7.64
7.47
7.26
6.93
6.46
6.40
6.20
aHerb species with important value5%, Important value is the average of relative coverage, relative frequency, and relative density.
Table S3Phylum-level composition of bacteria communities underthreeland use types in June and October. The community composition is presented as relative abundance (%).
Variable / June / OctoberRP40a / CK40a / AL40a / RP40a / CK40a / AL40a
Proteobacteria / 38.22±0.84 A / 38.24±0.92 A / 29.83±0.48 B / 40.07±1.53 A / 38.47±1.71 A / 29.31±0.99 B
Actinobacteria / 21.65±0.89 B / 20.83±1.07 B / 26.38±0.30 A / 18.43±0.84 B / 20.30±1.61 B / 27.27±0.91 A
Acidobacteria / 19.25±0.75 A / 18.58±0.76 A / 19.63±0.30 A / 17.26±2.02 A / 17.50±0.67 A / 17.18±0.75 A
Chloroflexi / 4.36±0.18 B / 4.20±0.13 B / 6.13±0.21 A / 4.29±0.65 B / 5.21±0.51 B / 7.01±0.58 A
Planctomycetes / 5.74±0.37 A / 5.66±0.20 A / 6.32±0.18 A / 6.58±0.41 A / 6.06±0.43 A / 6.27±0.32 A
Gemmatimonadetes / 1.24±0.07 B / 1.21±0.11 B / 1.80±0.18 A / 1.62±0.29 A / 1.74±0.27 A / 1.88±0.31 A
Bacteroidetes / 5.77±0.33 A / 6.32±0.68 A / 2.42±0.34 B / 7.40±1.59 A / 6.55±1.24 A / 2.27±0.32 B
Cyanobacteria / 0.35±0.04 B / 0.48±0.09 B / 2.22±0.54 A / 1.08±0.71 B / 0.29±0.04 B / 4.65±0.86 A
Nitrospirae / 0.93±0.14 B / 0.74±0.10 B / 1.69±0.24 A / 0.84±0.16 A / 1.00±0.17 A / 1.26±0.10 A
Firmicutes / 0.74±0.08 C / 1.70±0.17 A / 1.16±0.11 B / 0.36±0.04 C / 0.89±0.09 A / 0.60±0.06 B
Armatimonadetes / 0.31±0.04 B / 0.36±0.03 B / 0.57±0.06 A / 0.37±0.05 B / 0.44±0.02 B / 0.80±0.06 A
Verrucomicrobia / 0.09±0.02 A / 0.17±0.04 A / 0.10±0.03 A / 0.13±0.04 B / 0.21±0.03 A / 0.10±0.02 AB
All values are presented as Means ± Standard error (means ± SE) (n=6). Capital letter next to the Means ±SE indicates significant differences among three land use in each period (June and October) at P< 0.05 using Duncan's Multiple Range Test (DMRT) following ANOVA.; Three land use types: RobiniapseudoacaciaL. (RP); CaraganakorshinskiiKom (CK);abandoned land (AL)
Table S4 Phylum-level composition of fungal communities underthreeland use types in June and October. The community composition is presented as relative abundance (%).
Variable / June / OctoberRP40a / CK40a / AL40a / RP40a / CK40a / AL40a
Ascomycota / 78.53±0.861A / 77.29±0.951 A / 71.52±0.717B / 76.34±1.061A / 74.04±1.385A / 168.87±1.557B
Basidiomycota / 6.82±0.674B / 7.42±0.562B / 12.57±0.977A / 6.78±0.888C / 11.47±0.813B / 15.45±0.554A
Zygomycota / 11.61±0.388A / 11.84±0.442A / 12.57±1.215A / 14.19±0.871A / 12.10±1.211A / 12.48±1.652A
Chytridiomycota / 0.01±0.007A / 0.03±0.020A / 0.08±0.037A / 0.02±0.003B / 0.03±0.005B / 0.10±0.029A
Glomeromycota / 0.01±0.002A / 0.01±0.002A / 0.04±0.040A / 0.02±0.006A / 0.05±0.004A / 0.14±0.106A
All values are presented as Means ± Standard error (means ± SE) (n=6). Capital letter next to the Means ±SE indicates significant differences among three land use in each period (June and October) at P< 0.05 using Duncan's Multiple Range Test (DMRT) following ANOVA.Three land use types: RobiniapseudoacaciaL. (RP); CaraganakorshinskiiKom (CK);abandoned land (AL).
Table S5The C, N, P of soil microbial biomass and fine root biomassas affected by afforestationin June and October.
RP40a / CK40a / AL40a / RP40a / CK40a / AL40a
Fine root C (g/kg) ** / 361.36±5.887 A / 352.10±0.918 A / 242.41±7.990 B / 310.09±1.14 A / 302.91±3.54 A / 145.39±5.41 B
Fine root N (g/kg)** / 18.54±0.434 A / 17.56±0.030 B / 8.79±0.073 C / 13.80±0.19 A / 13.43±0.05 B / 6.94±0.03 C
Fine root P (g/kg)** / 1.90±0.040 A / 1.97±0.030 A / 1.42±0.017 B / 1.56±0.03 A / 1.61±0.02 A / 1.17±0.04 B
MBC (mg/kg)** / 444.77±3.365 A / 427.29±8.79 A / 191.45±7.762 B / 398.70±5.34 A / 319.72±9.54 B / 167.56±2.71 C
MBN (mg/kg)** / 57.10±1.301 A / 52.66±1.541 B / 23.90±0.347 C / 71.45±1.07 A / 55.05±1.36 B / 21.93±0.14 C
MBP (mg/kg)** / 13.09±0.278 A / 10.65±0.222 B / 9.54±0.461 C / 13.48±0.32 B / 17.74±0.70 A / 8.65±0.49 C
All values are presented as Means ± Standard error (means ± SE) (n=6). Capital letter next to the Means ±SE indicates significant differences among three land use in each period (June and October) at P< 0.05 using Duncan's Multiple Range Test (DMRT) following ANOVA; ** P <0.01, * P <0.05; Three land use types: RobiniapseudoacaciaL. (RP); CaraganakorshinskiiKom (CK);abandoned land (AL). MBC, MBN, MBPrepresents the abbreviations ofmicrobial biomass carbon, microbial nitrogen, microbial phosphorus, respectively.