Test #4 Study Guide
I.By using any of the rules of implication and replacement, select the conclusion that follows in a single step from the given premises. There is only one correct answer. There will be 25 questions on the test, each worth 4 points. There will be 3 proofs as well for extra credit (each will be worth up to 15 points).
1.1.R R
2.N • T
3.R (N • T)
a.T2, Simp
b.(N • T) R3, Trans
c.R2, 3, MT
d.R (N T)3, DM
e.R1, Taut
2.1.G • A
2.K (G • A)
3.G M
a.(K G )A2, Exp
b.K (A • G)2, Com
c.(K G) • A2, Assoc
d.K1, 2, MP
e.M1, 3, MP
3.1.(Q • S)
2.F (Q • S)
3.H (Q • S)
a.(H • Q) (H • S)3, Dist
b.Q S1, DM
c.F1, 2, MT
d.H1, 3, DS
e.F1, 2, MT
4.1.N
2.R N
3.C • (T R)
a.C3, Simp
b.T N2, 3, HS
c.(C • T) R3, Assoc
d.R1, 2, MT
e.N R2, Trans
5.1.(K • T) (K • H)
2.M (K • H)
3.(K • H)
a.K H3, DM
b.K • T1, 3, DS
c.K • (T H)1, Dist
d.M2, 3, MT
e.(M • K) H2, Exp
6.1.A
2.G (A L)
3.A G
a.A G3, DN
b.(G A) L2, Assoc
c.L1, 2, MP
d.G1, 3, DS
e.G (L A)2, Trans
7.1.(S F) • (F B)
2.S F
3.F
a.S B1, HS
b.F B1, 2, CD
c.S2, 3, DS
d.B1, 3, MP
e.S1, 3, MT
8.1.N R
2.(N • R) C
3.N
a.(N R) (R N)1, Equiv
b.N • (R C)2, Assoc
c.C (N • R)2, Com
d.N (R C)2, Exp
e.R1, 3, MP
9. 1.M S
2. M
3. (M H) S
a.H2, 3, DS
b.M H3, Simp
c.M (H S)3, Assoc
d.S1, 2, MP
e.M S1, Impl
10.1.(J • N) T
2.(J • N)
3.T
a.T1, 2, DS
b.J N2, DM
c.J • N1, 3, DS
d.J • (N T)1, Assoc
e.J2, Simp
11.1.U (S • K)
2.R (U • U)
3.S U
a.(U • S) K1, Exp
b.R U2, DN
c.R U2, Taut
d.R (S • K)1, 2, HS
e.(S U) • (U S)3, Equiv
12.1.I B
2.M I
3.I
a.M B1, 2, HS
b.B1, 3, DS
c.M2, 3, MT
d.I M2, Com
e.(I • B)1, DM
13.1.N • F
2.K (N • F)
3.U (K • N)
a.K1, 2, MT
b.(U K) • N3, Assoc
c.(K • N) F2, Exp
d.(U K) • (U N)3, Dist
e.(N • F)1, DM
14.1.D H
2.D
3.(D S)
a.H1, 2, MT
b.D (D H)2, Add
c.H D1, Com
d.S2, 3, DS
e.D S3, DM
15.1.A
2.(A T) G
3.Q (A T)
a.Q (T A)3, Trans
b.(Q A) T3, Assoc
c.A (T • G)2, Exp
d.T1, 3, MP
e.Q G2, 3, HS
16.1.P • (H D)
2.(P • H)
3.(P H) • (P H)
a.P H3, Equiv
b.H D1, Simp
c.(P • H) D1, Assoc
d.P • (H D)1, Impl
e.P • H2, DN
17.1.N C
2.(N C) (F C)
3.C
a.F C1, 2, MP
b.N1, 3, DS
c.F2, 3, MT
d.N1, 3, MT
e.C • R3, Add
18.1.(S • J) (S • J)
2.S S
3.J P
a.S2, Taut
b.J J1, 2, CD
c.S J1, Equiv
d.J P3, Impl
e.P J3, Trans
19.1.Q (A T)
2.T
3.A T
a.Q (A T)1, DN
b.(A T) Q1, Com
c.(Q A) T1, Assoc
d.Q1, 3, MP
e.A2, 3, DS
20.1.E P
2.P
3.(P H)
a.H2, 3, DS
b.P • (P H)2, 3, Conj
c.P • H3, DM
d.E1, 2, MT
e.P E1, Trans
21.1.P
2.L (P M)
3.(P • M) (R R)
a.(P • M) R3, Taut
b.P3, Simp
c.L (R R)2, 3, HS
d.(L P) (L M)2, Dist
e.M1, 2, DS
22.1.N H
2.Q (N H)
3.(N Q) • (H Q)
a.Q (N • H)2, DM
b.H Q3, Simp
c.Q1, 2, MT
d.N (N H)2, 3, HS
e.Q Q1, 3, CD
23.1.R (E • D)
2.R • G
3.E G
a.G2, Simp
b.E • D1, 2, MP
c.E2, 3, MT
d.(R • G) F2, Add
e.E G3, Impl
24.1.(L M) • (F J)
2.M (F L)
3.F L
a.L (F L)1, 2, HS
b.M J1, 3, CD
c.L M1, Simp
d.M2, 3, MT
e.M (F L)2, DM