PERE Jean-Baptiste COEN 312
ID number: 9436413
Assignment #2
Chapter 3: Gate-level minimization
3.1) Simplification of the following Boolean function, using three-variable maps:
d) F(x, y, z) = ∑(3, 5, 6, 7)
x y z / 00 / 01 / 11 / 100 / / /
1 /
1 /
1 /
1 / 1
F(x, y, z) = xy + yz + xz
3.3) Simplification of the following Boolean expression, using three-variable maps:
b) x’y’ + yz + x’yz’
x yz / 00 / 01 / 11 / 10
0 / 1 / 1 / /
1 / 1 /
1 / 1
x’y’ + yz + x’yz’ = x’ + yz
3.5) Simplification of the following Boolean function, using four-variable maps:
d) F(A, B, C, D) = ∑ (0, 2, 4, 5, 6, 7, 8, 10, 13, 15)
A B C D / 00 / 01 / 11 / 1000 / 1 /
1 / / 1
01 / /
1 / 1 /
11 / / 1 / 1 /
10 / 1 / 1 / / 1
F(A, B, C, D) = A’B + B’D’ + BD = A’B + (B xor D)’
3.6) Simplification of the following Boolean expression, using four-variable maps:
b) x’z + w’xy’ + w(x’y + xy’)
w x y z / 00 / 01 / 11 / 1000 / /
1 / 1 /
01 /
1 / 1 / 1 /
1
11 / 1 / / /
1
10 / / / / 1
x’z + w’xy’ + w(x’y + xy’) = xy’ + x’z + wx’y
3.8) Minterms of the following Boolean expression by first plotting each function in a map:
b) C’D + ABC’ + ABD’ + A’B’D
A B C D / 00 / 01 / 11 / 1000 / / 1 /
01 / 1 /
1 / 1 / 1
11 / 1 /
10 / / / 1
C’D + ABC’ + ABD’ + A’B’D = ∑(1, 3, 5, 9, 12, 13, 13, 14)
3.9) All the prime implicants (the essential or not) for the following Boolean function:
b) F(A, B, C, D) = ∑(0, 2, 3, 5, 7, 8, 10, 11, 14, 15)
A B C D / 00 / 01 / 11 / 1000 / 1 /
1
01 / /
1 / /
11 /
1 / 1 /
1 /
1
10 / 1 / / 1 / 1
Essential Prime implicants:
∑(0, 2, 8, 10) = B’D’
∑(3, 7, 11, 15) = CD or ∑(2, 3, 10, 11) = B’C
∑(10, 11, 14, 15) = AC
∑(5, 7) = A’BD
3.12) Simplification of all the following Boolean function to product-of-sums form:
b) F(A, B, C, D) = ∏(1, 3, 5, 7, 13, 15)
A B C D / 00 / 01 / 11 / 1000 /
01 /
0 /
0 /
0 /
11 / 0 / 0 / 0
10 / / / /
F(A, B, C, D) =(A + D’)(B’ + D’)
3.15) Simplification of the following function F, together with the don’t care conditions d, and then expression of the simplified function in sum-of-minterms form:
d) F(A, B, C, D) = ∑(1, 3, 8, 10, 15) d(A, B, C, D) = ∑(0, 2, 9)
A B C D / 00 / 01 / 11 / 1000 /
X / 1
01 / 1 /
/
/
X
11 / 1 / /
1 /
10 / X / 1
F(A, B, C, D) = B’D’ +A’B’ + ABCD = ∑(0, 1, 2, 3, 8, 10, 15)
1