Nuclear quantum effect and temperature dependency on the hydrogen-bonded structure of 7-azaindole dimer

NaweeKungwana,*,YudaiOgatab, SupaHannongbuac
and Masanori Tachikawab,*

aDepartment of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

b Quantum Chemistry Division, Graduate School of Nanobioscience, Yokohama City University,
Yokohama 236-0027, Japan

c Department of Chemistry, Faculty of Science, Kasetsart University, Bangkhen Campus, Bangkok 10930, Thailand

*Corresponding authors.
E-mail: (N. Kungwan) and (M. Tachikawa).

Supporting information

Table S1 Vibrational frequency data which predominantly involve hydrogen bonding calculated at PM6, HF/6-31G(d,p), B3LYP/6-31G(d,p), and MP2/6-31G(d,p) levels of theory, as well as the experimental values. All values are in cm-1.

Expt. value / PM6 / B3LYP / MP2
Ref. 17 / Ref. 20 / Description / 6-31G(d,p) / 6-31G(d,p)
dimeroop twisting / 25 / 26 / 23
dimeropp wagging / 29 / 34 / 34
dimerip bending / 59 / 81 / 81
dimeroop wagging / 63 / 91 / 86
dimerip bending / 66 / 100 / 94
110 / dimer stretching / 80 / 111 / 115
.
.
.
1254 / δCH-3 pyridine/pyrrole (+δNH) / 1258 / 1287 / 1267
1337 / νCHpyrole +δCH / 1366 / 1378 / 1370
1344 / 14 pyridine +δNH+δCH / 1389 / 1394 / 1375
1349 / 14 pyridine +δNH+δCH / 1394 / 1397 / 1408
1444 / δNH+δCH+νC–NH pyrrole / 1408 / 1464 / 1472
1457 / δNH+δCH+νC–NH pyrrole / 1415 / 1466 / 1496
1506 / δNH+δCH pyridine / 1528 / 1547 / 1517
1518 / δNH+δCH pyridine / 1524 / 1551 / 1529
1585 / 8a pyridine+δNH / 1556 / 1639 / 1530
1590 / 8a pyridine+δNH / 1557 / 1646 / 1563
1598 / 8a pyridine+δNH / 1608 / 1657 / 1588
1607 / 8a pyridine+ δNH / 1609 / 1665 / 1597
2676 / νNH stretching / 2658 / 3241 / 3304

Figure S1(a) Kinetic energy with primitive estimator at 75 K, (b)with virial energy estimator at 75 K, (c) with primitive estimator at 150 K, and (d)with virial energy estimator at 150 K. The average values are also shown in the Figures.

Figure S2 One-dimensional distributions of important distances performed at 225 K on (a) RN1H1, (b) RH1···N2, and (c) RN1···N2with quantum (Qm.) and classical (Cl.) simulations, as well as the equilibrium (Eq.) values, respectively.

Figure S3 Two-dimensional distributions of RNH and RN···N distances performed at 225 K on (a) quantum RN1H1 and RN1···N1, (b) classical RN1H1 and andRN1···N1, (c) quantum RH1···N2 and RN1···N2, and (d) classical RH1···N2 and RN1···N2.

Figure S4 Two-dimensional distributions of two heavy atomicdistances performed at 225 K on (a) quantum RN1···N2 , (b) classical RN1···N2.