Calculus Exam: Series Convergence/Divergence (9.1-9.6)

Part 1: Non-Calculator

Name: ______Date ______

1.  Write the first three terms of the sequence.

a. /
b. /
c. /
d. /
e. /

2.  Find the positive values of for which the series converges.

a. / converges for
b. / diverges only at
c. / converges for
d. / converges for
e. / converges for

3.  Find the sum of the convergent series.

a. /
b. /
c. /
d. /
e. /

4.  1998 #18

5.  Determine the convergence or divergence of the sequence with the given nth term. If the sequence converges, find its limit.

a. / The sequence diverges.
b. / The sequence converges to 4.
c. / The sequence converges to 3.
d. / The sequence converges to 1.
e. / The sequence converges to 0.

6.  Find the sum of the convergent series.

a. /
b. /
c. /
d. /
e. /

7.  1997 #20

8.  Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.

a. / both diverges; p-series and diverges; Integral Test
b. / converges; p-series
c. / converges; Ratio Test
d. / diverges; p-series
e. / diverges; Integral Test

9.  Consider the series.

Review the Alternating Series Test to determine which of the following statements is true for the given series.

a. / Since for some n, the series diverges.
b. / Since cannot be shown to be true for all n, the Alternating Series Test cannot be applied.
c. / The series converges.
d. / Since cannot be shown to be true for all n, the series diverges.
e. / Since , the series diverges.

10.  2003 #10

11.  Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.

a. /
b. /
c. /
d. /
e. /

12.  Use the Ratio Test to determine the convergence or divergence of the series .

a. /
b. /

c. Ratio test inconclusive

13. Find all values of x for which the series converges.

a. /
b. /
c. /
d. /
e. /

Calculus Exam: Series Convergence/Divergence (9.1-9.6)

Part 2: Calculator

Name: ______Date ______

1.  Write the first five terms of the sequence of partial sums.

a. /
b. /
c. /
d. /
e. /

2.  Find the positive values of for which the series converges.

a. / The series converges for .
b. / The series converges for .
c. / The series diverges for all positive values of .
d. / The series converges for .
e. / The series converges for .

3.  The series is a convergent series. Use Theorem 9.15 to determine the number of terms required to approximate the sum of this series with an error less than 0.001.

a. /
b. /
c. /
d. /
e. /

4.  1997 #14

5.  1997 #76

6.  Find the sum of the convergent series

a. /
b. /
c. /
d. /
e. /

7.  1998 #76

8.  Determine the convergence or divergence of the series using any appropriate test from this chapter. Identify the test used.

a. / both diverges; Ratio Test and diverges; Theorem 9.9 (nth Term Test for Divergence)
b. / converges; Integral Test
c. / diverges; Theorem 9.9 (nth Term Test for Divergence)
d. / converges; p-series
e. / diverges; Ratio Test

9.  1998 #84

10.  2003 #24

11.  Use the Ratio Test to determine the convergence or divergence of the series.

a. / diverges
b. / converges
c. / Ratio Test inconclusive

12.  2003 #22