Pentti Varpasuo/PVA Engineering Services, September 28, 2016, Report,Page 20 of 68
The validation of Varpasuo-Saari-Nikkari (2001) [4] GMPE equation for peak ground acceleration with the aid of the wave form registrations made by Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network during the years 2009-2016.
Pentti Varpasuo,
PVA Engineering Services
Introduction
The characteristics of ground motion insidec Baltic shield durind the past ten years was investigated in reference [1]. The following ten events that occurred inside the Baltic shield in the territory of Sweden and Finland and the corresponding seismograph recordings recorded at the Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network were utilized in this validation task and are listed in the following Table 1:
Date / Time (UTC) / Latitude / Longitude / Depth / Mw (Hel) / Event code05/05/2009 / 21:55:28,6 / 63.679 / 0.54 / 21.487 / 3.4 / 2009125215528
15/06/2010 / 20:30:51,2 / 64.492 / 0.55 / 21.323 / 3.5 / 2010166203051
19/03/2011 / 11:21:53,3 / 60.563 / 0.59 / 25.300 / 2.6 / 2011078112153
19/09/2011 / 14:09:27,1 / 62.409 / 0.37 / 23.811 / 2.3 / 2011262140927
01/12/2011 / 06:04:13,6 / 60.902 / 0.36 / 26.672 / 2.8 / 2011335060413
22/12/2011 / 07:21:10,1 / 60.907 / 0.35 / 26.693 / 2.6 / 2011356072110
18/05/2012 / 19:57:04,8 / 65.350 / 0.64 / 23.855 / 2.8 / 2012139195704
02/10/2012 / 11:11:42,0 / 64.867 / 0.39 / 21.384 / 2.7 / 2012276111142
15/09/2014 / 13:08:00,5 / 61.648 / 0.47 / 14.255 / 4.2 / 2014258130800
19/03/2016 / 21:55:31,6 / 65.066 / 0.22 / 22.525 / 4.1 / 2016079215531
Table 1. Event list
In the following Figure 1 the location map of events as well as the location map and denotation of the Finnish National Seismograph Network is given [2], [3].
Figure 1. Location map of events and monitoring stations
In the following Table 2 the mechanical properties of rock at the monitoring stations are given:
Station / Lat / Lon / Altitude / Rock / Era / Epoch / SuiteOUF / 64.3 / 24.7 / 90 / Dolerite / Paleoproterozoic / Orosirian 4 / Korkatti
JOF / 62.9 / 31.3 / 180 / Diorite / Neoarchean / Archean 1 / Silvevaara
KAF / 62.1 / 26.3 / 195 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
KEF / 62.1 / 24.8 / 215 / Granite / Paleoproterozoic / Orosirian 3 / Lithodemes
KJN / 64.0 / 27.7 / 265 / Gabbro / Paleoproterozoic / Rhyacian 1 / Koli sill
MEF / 60.2 / 24.3 / 55 / Granite / Paleoproterozoic / Orosirian 6 / Granite
NUR / 60.5 / 24.6 / 102 / Gneiss / Paleoproterozoic / Rhyacian 1 / Migmatite
OUL / 65.0 / 25.8 / 62 / Quartzite / Paleoproterozoic / Rhyacian 1 / Koli sill
PVF / 60.5 / 25.8 / 45 / Diorite / Paleoproterozoic / Orosirian 4 / Plutonic
RAF / 61.0 / 21.7 / 30 / Granite / Mesoproterozoic / Calymmian 2 / Rapakivi
SUF / 62.7 / 26.1 / 190 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
VAF / 63.0 / 22.6 / 65 / Diorite / Paleoproterozoic / Orosirian 4 / Lithodemes
VJF / 60.5 / 27.5 / 20 / Viborgite / Mesoproterozoic / Statherian 4 / Rapakivi
RUFX / 61.4 / 28.9 / 138 / Diorite / Paleoproterozoic / Orosirian 4 / Plutonic
RMF / 64.2 / 29.9 / 220 / Tonalite / Neoarchean / Orosirian 4 / Haasianvaara
FIA0 / 61.4 / 26.0 / 150 / Tonalite / Paleoproterozoic / Orosirian 4 / Plutonic
FIA1 / 61.4 / 26.0 / 138 / Tonalite / Paleoproterozoic / Orosirian 4 / Plutonic
OBF0 / 64.4 / 24.2 / 25 / Granite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF1 / 64.4 / 24.0 / 25 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF2 / 64.6 / 24.4 / 30 / Volcanic / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF3 / 64.8 / 24.7 / 25 / Gneiss / Paleoproterozoic / Orosirian 3 / Näläntöjärvi
OBF4 / 64.8 / 25.1 / 40 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF5 / 64.4 / 25.2 / 80 / Gabbro / Paleoproterozoic / Orosirian 3 / Plutonic
OBF6 / 64.1 / 24.5 / 70 / Conglomerate / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF7 / 64.1 / 24.0 / 39 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF8 / 64.3 / 23.4 / 4 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
Table 2 Station list and lithology
In the following Table 3 the gain factors of the Finnish stations that recorded the investigated ten events are given in [2] and [3].
Station name Gain factor [m/s/count]
JOF 2.61E+9
KAF 1.74E+9
NUR 3.84E+9
OUL 3.18E+9
VAF 1.49E+9
KEF 1.50E+9
MEF 1.50E+9
PVF 2.02E+9
SUF 2.08E+9
VJF 1.20E+9
RAF 1.50E+9
OUF 1.50E+9
OBF0 7.49E+8
OBF1 7.49E+8
OBF2 7.49E+8
OBF3 7.49E+8
OBF4 7.49E+8
OBF5 7.49E+8
OBF6 7.49E+8
OBF7 7.49E+8
OBF8 5.99E+8
RMF 5.99E+8
RUFX 5.99E+8
Table 3 The gain factors of Finnish seismograph stations that recorded the investigated ten events. The meaning of the gain factor is that the so called count number recorded by the specific seismograph can be converted to velocity histories in meters per second bydividing the count number by gain factor [2].
In the following Figures 2-12 the 360 second acceleration time histories of the longitudinal component of the year2009-may05 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000.
Figure 1 Year2009-may05-event-acc-time-hist-at-JOF(m/s/s)-max=0.000053
Figure 3 Year2009-may05-event-acc-time-hist-at-KAF(m/s/s)-max=0.000354
Figure 2 year2009-may05-event-acc-time-hist-at-KEF(m/s/s)-max=0.000612
Figure 3 year2009-may05-event-acc-time-hist-at-MEF(m/s/s)-max=0.000078
Figure 4 year2009-may05-event-acc-time-hist-at-OUL(m/s/s)-max=0.000043
Figure 5 year2009-may05-event-acc-time-hist-at-PVF(m/s/s)-max=0.000057
Figure 8 year2009-may05-event-acc-time-hist-at-RAF(m/s/s)-max=0.000021
Figure 9 year2009-may05-event-acc-time-hist-at-SUF(m/s/s)-max=0.000072
Figure 6 year2009-may05-event-acc-time-hist-at-VAF(m/s/s)-max=0.005171
Figure 11 year2009-may05-event-acc-time-hist-at-VJF(m/s/s)-max=0.000103
In the following Figures 12-20 the 360 second acceleration time histories of the longitudinal component of the year2010-jun15 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 12 year2010-jun15-event-acc-time-hist-at-KAF(m/s/s)-max=0.000317
Figure 13 year2010-jun15-event-acc-time-hist-at-KEF(m/s/s)-max=0.000382
Figure 14 year2010-jun15-event-acc-time-hist-at-MEF(m/s/s)-max=0.000084
Figure 15 year2010-jun15-event-acc-time-hist-at-OUL(m/s/s)-max=0.000233
Figure 76 year2010-jun15-event-acc-time-hist-at-PVF(m/s/s)-max=0.000054
Figure 87 year2010-jun15-event-acc-time-hist-at-RAF(m/s/s)-max=0.000265
Figure 98 year2010-jun15-event-acc-time-hist-at-SUF(m/s/s)-max=0.000680
Figure 109 year2010-jun15-event-acc-time-hist-at-VAF(m/s/s)-max=0.002202
Figure 20 year2010-jun15-event-acc-time-hist-at-VJF(m/s/s)-max=0.000118
In the following Figures 21-29 the 360 second acceleration time histories of the longitudinal component of the year2011-mar19 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 21 year2011-mar19-event-acc-time-hist-at-KEF(m/s/s)-max=0.000695
Figure 22 year2011-mar19-event-acc-time-hist-at-MEF(m/s/s)-max=0.003307
Figure 23 year2011-mar19-event-acc-time-hist-at-OUL(m/s/s)-max=0.000006
Figure 24 year2011-sep19-event-acc-time-hist-at-RAF(m/s/s)-max=0.000555
Figure 25… year2011-mar19-event-acc-time-hist-at-SUF(m/s/s)-max=0.000282
Figure 26…year2011-mar19-event-acc-time-hist-at-VAF(m/s/s)-max=0.000074
Figure 27 year2011-mar19-event-acc-time-hist-at-VJF(m/s/s)-max=0.002835
Figure 28 year2011-mar19-event-acc-time-hist-at-JOF(m/s/s)-max=0.000030
Figure 29 year2011-mar19-event-acc-time-hist-at-PVF(m/s/s)-max=0.003977
In the following Figures 30-38 the 360 second acceleration time histories of the longitudinal component of the year2011-sep19 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 30 year2011-sep19-event-acc-time-hist-at-KEF(m/s/s)-max=0.000678
Figure 31 year2011-sep19-event-acc-time-hist-at-MEF(m/s/s)-max=0.000075
Figure 32 year2011-sep19-event-acc-time-hist-at-OUL(m/s/s)-max=0.000004
Figure 33 year2011-sep19-event-acc-time-hist-at-RAF(m/s/s)-max=0.000092
Figure 34 year2011-sep19-event-acc-time-hist-at-SUF(m/s/s)-max=0.000256
Figure 35 year2011-sep19-event-acc-time-hist-at-VAF(m/s/s)-max=0.000469
Figure 36 year2011-sep19-event-acc-time-hist-at-KAF(m/s/s)-max=0.000169
Figure 37 year2011-sep19-event-acc-time-hist-at-JOF(m/s/s)-max=0.000008
Figure 38 year2011-sep19-event-acc-time-hist-at-PVF(m/s/s)-max=0.000032
In the following Figures 39-49 the 360 second acceleration time histories of the longitudinal component of the year2011-dec01 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 39 year2011-dec01-event-acc-time-hist-at-KEF(m/s/s)-max=0.000431
Figure 40 year2011-dec01-event-acc-time-hist-at-MEF(m/s/s)-max=0.000430
Figure 41 year2011-dec01-event-acc-time-hist-at-OUL(m/s/s)-max=0.000008
Figure 42 year2011-dec01-event-acc-time-hist-at-OUF(m/s/s)-max=0.000045
Figure 43 year2011-dec01-event-acc-time-hist-at-RAF(m/s/s)-max=0.000141
Figure 44 year2011-dec01-event-acc-time-hist-at-SUF(m/s/s)-max=0.000324
Figure 45 year2011-dec01-event-acc-time-hist-at-VAF(m/s/s)-max=0.000079
Figure 46 year2011-dec01-event-acc-time-hist-at-KAF(m/s/s)-max=0.000638
Figure 47 year2011-dec01-event-acc-time-hist-at-JOF(m/s/s)-max=0.000070
Figure 48 year2011-dec01-event-acc-time-hist-at-PVF(m/s/s)-max=0.000234
Figure 119 year2011-dec01-event-acc-time-hist-at-VJF(m/s/s)-max=0.001563
In the following Figures 50-60 the 360 second acceleration time histories of the longitudinal component of the year2011-dec22 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 50 year2011-dec22-event-acc-time-hist-at-KEF(m/s/s)-max=0.000229
Figure 51 year2011-dec22-event-acc-time-hist-at-MEF(m/s/s)-max=0.000446
Figure 52 year2011-dec22-event-acc-time-hist-at-OUL(m/s/s)-max=0.000005
Figure 53 year2011-dec22-event-acc-time-hist-at-OUF(m/s/s)-max=0.000025
Figure 54 year2011-dec22-event-acc-time-hist-at-RAF(m/s/s)-max=0.000140
Figure 55 year2011-dec22-event-acc-time-hist-at-SUF(m/s/s)-max=0.000145
Figure 56 year2011-dec22-event-acc-time-hist-at-VAF(m/s/s)-max=0.000069
Figure 57 year2011-dec22-event-acc-time-hist-at-KAF(m/s/s)-max=0.000638
Figure 58 year2011-dec22-event-acc-time-hist-at-JOF(m/s/s)-max=0.000023
Figure 59 year2011-dec22-event-acc-time-hist-at-PVF(m/s/s)-max=0.000350
Figure 60 year2011-dec22-event-acc-time-hist-at-VJF(m/s/s)-max=0.001171
In the following Figures 61-69 the 360 second acceleration time histories of the longitudinal component of the year2012-may18 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 61 year2012-may18-event-acc-time-hist-at-KEF(m/s/s)-max=0.000581
Figure 62 year2012-may18-event-acc-time-hist-at-MEF(m/s/s)-max=0.000132
Figure 63 year2012-may18-event-acc-time-hist-at-OUL(m/s/s)-max=0.000380
Figure 64 year2012-may18-event-acc-time-hist-at-OUF(m/s/s)-max=0.002125
Figure 65 year2012-may18-event-acc-time-hist-at-RAF(m/s/s)-max=0.000127
Figure 66 year2012-may18-event-acc-time-hist-at-VAF(m/s/s)-max=0.000498
Figure 67 year2012-may18-event-acc-time-hist-at-JOF(m/s/s)-max=0.000082
Figure 68 year2012-may18-event-acc-time-hist-at-PVF(m/s/s)-max=0.000350
Figure 69 year2012-may18-event-acc-time-hist-at-VJF(m/s/s)-max=0.000341
In the following Figures 70-78 the 360 second acceleration time histories of the longitudinal component of the year2012-oct02 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000
Figure 70 year2012-oct02-event-acc-time-hist-at-KEF(m/s/s)-max=0.000102
Figure 71 year2012-oct02-event-acc-time-hist-at-MEF(m/s/s)-max=0.000035
Figure 72 year2012-oct02-event-acc-time-hist-at-OUF(m/s/s)-max=0.000648
Figure 73 year2012-oct02-event-acc-time-hist-at-RAF(m/s/s)-max=0.000043
Figure 74 year2012-oct02-event-acc-time-hist-at-SUF(m/s/s)-max=0.000214
Figure 75 year2012-oct02-event-acc-time-hist-at-VAF(m/s/s)-max=0.000434
Figure 76 year2012-oct02-event-acc-time-hist-at-JOF(m/s/s)-max=0.000041
Figure 77 year2012-oct02-event-acc-time-hist-at-PVF(m/s/s)-max=0.000011
Figure 78 year2012-oct02-event-acc-time-hist-at-VJF(m/s/s)-max=0.000094
In the following Figures 79-90 the 900 second acceleration time histories of the longitudinal component of the year2014-sep15 (Sveg) event recorded at the stations of Table 1 are given. The resolution in part of the time histories is 0.01 s and so that the number of recorded points in each history of this part is 90000 and 0.004 s in part of the time histories (OBF0 and OBF4) so that the number of recorded points in each history of this part is 225000.
Figure 79 year2014-sep15-(Sveg)-event-acc-time-hist-at-KAF(m/s/s)-max=0.000248
Figure 80 year2014-sep15-(Sveg)-event-acc-time-hist-at-KEF(m/s/s)-max=0.000427
Figure 81 year2014-sep15-(Sveg)-event-acc-time-hist-at-MEF(m/s/s)-max=0.000435
Figure 82 year2014-sep15-(Sveg)-event-acc-time-hist-at-OUL(m/s/s)-max=0.000077
Figure 83 year2014-sep15-(Sveg)-event-acc-time-hist-at-PVF(m/s/s)-max=0.000187
Figure 84 year2014-sep15-(Sveg)-event-acc-time-hist-at-RAF(m/s/s)-max=0.000871
Figure 85 year2014-sep15-(Sveg)-event-acc-time-hist-at-SUF(m/s/s)-max=0.000330
Figure 86 year2014-sep15-(Sveg)-event-acc-time-hist-at-VAF(m/s/s)-max=0.000563
Figure 87 year2014-sep15-(Sveg)-event-acc-time-hist-at-VJF(m/s/s)-max=0.000208
Figure 88 year2014-sep15-(Sveg)-event-acc-time-hist-at-OBF0(m/s/s)-max=0.000609
Figure 89 year2014-sep15-(Sveg)-event-acc-time-hist-at-OBF4(m/s/s)-max=0.000300
Figure 12 year2014-sep15-(Sveg)-event-acc-time-hist-at-OUF(m/s/s)-max=0.000711
In the following Figures 91-110 the 360 second acceleration time histories of the longitudinal component of the year2016-mar19 (Gulf of Bothnia) event recorded at the stations of Table 1 are given. The resolution in part of the time histories is 0.01 s and so that the number of recorded points in each history of this part is 36 000 and 0.004 s in part of the time histories (OBF0 OBF1 OBF2 OBF3 OBF4 OBF5 OBF6 OBF7 OBF8 RMF and RUFX) so that the number of recorded points in each history of this part is 90 000.
Figure 91 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-KAF(m/s/s)-max=0.001270
Figure 92 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-KEF(m/s/s)-max=0.001001
Figure 93 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-MEF(m/s/s)-max=0.000302
Figure 94 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OUL(m/s/s)-max=0.001119
Figure 95 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF0(m/s/s)-max=0.01923364
Figure 96 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RAF(m/s/s)-max=0.000878
Figure 97 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-SUF(m/s/s)-max=0.001169
Figure 98 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-VAF(m/s/s)-max=0.003975
Figure 99 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-VJF(m/s/s)-max=0.000502
Figure 100 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF1(m/s/s)-max=0.012739
Figure 101 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF4(m/s/s)-max=0.005863
Figure 102 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OUF(m/s/s)-max=0.012406
Figure 103 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF2(m/s/s)-max=0.016851
Figure 104 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF3(m/s/s)-max=0.017157
Figure 105 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF5(m/s/s)-max=0.006900
Figure 106 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF6(m/s/s)-max=0.009517
Figure 107 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF7(m/s/s)-max=0.011203
Figure 108 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF8(m/s/s)-max=0.011441
Figure 109 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RMF(m/s/s)-max=0.010150
Figure 110 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RUFX(m/s/s)-max=0.000575
In the following Tables 4,5,6,7,8,9.10.11.12 and 13 and in the following Figures 111-120 the attenuation fit of of the ten acceleration registrations made by Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network during the years 2009-2016 with the Varpasuo-Saari-Nikkari (2001) [4] GMPE equation for peak ground acceleration is given.
km / 5.8 / 5 / 3.4 / 3.4 / weighted 0_6*tsaguenay + 0_4*tnewcastle year2009 may05 / dist(km) / year2009 may05 m 3_4 lon comp pga in m/s/s / station / 3.4 / 3.4 / weighted 0_6 * saguenay + 0_4 * newcastle1 / 1.44 / 0.55 / 0.03 / 0.02 / 0.53 / 152.6061 / 0.0051715 / VAF / 0.000010 / 0.000406 / 0.004157 / 0.01
5 / 0.38 / 0.15 / 0.01 / 0.02 / 0.29 / 303.3342 / 0.0002100 / RAF / 0.000000 / 0.000097 / 0.000972 / 0.44
10 / 0.16 / 0.06 / 0.00 / 0.02 / 0.22 / 420.301 / 0.0006120 / KEF / 0.000001 / 0.000049 / 0.000500 / 0.01
15 / 0.09 / 0.04 / 0.00 / 0.01 / 0.17 / 513.1461 / 0.0000784 / MEF / 0.000000 / 0.000032 / 0.000325 / 0.38
30 / 0.03 / 0.01 / 0.00 / 0.01 / 0.08 / 524.8457 / 0.0000430 / OUL / 0.000000 / 0.000031 / 0.000310 / 0.74
45 / 0.01 / 0.01 / 0.00 / 0.00 / 0.04 / 539.9695 / 0.0007235 / SUF / 0.000000 / 0.000029 / 0.000292 / 0.15
65 / 0.01 / 0.00 / 0.00 / 0.00 / 0.02 / 575.0648 / 0.0003542 / KAF / 0.000000 / 0.000026 / 0.000256 / 0.02
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 610.3854 / 0.0000566 / PVF / 0.000000 / 0.000023 / 0.000226 / 0.36
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 775.2292 / 0.0001039 / VJF / 0.000000 / 0.000014 / 0.000137 / 0.01
120 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 1117.706 / 0.0000561 / JOF / 0.000000 / 0.000006 / 0.000064 / 0.00
240 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
480 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
960 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
1500 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
-5.941074 / 1.13389 / -0.0209 / 3.5770448 / 3.4173206 / 0.017304 / 2.13
log stand dev = / 0.48678
dy/dr(100) / -0.0348 / dy/dr(100) / -0.034810
c3 / -3.4810 / c3 / -2.085317
c1 / 2.7814 / c1 / -0.893364
Table 4 year2009 may05 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation
Figure 111 year2009 may05 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation
km / 5.8 / 5 / 3.5 / 3.5 / weighted 0_6 * tsaguenay + 0_4 * tnewcastle year2010 jun15 / dist(km) / year2010 jun15 m 3_5 lon comp pga in m/s/s / station / 3.5 / 3.5 / weighted 0_6 * tsaguenay + 0_4 * tnewcastle1 / 1.44 / 0.55 / 0.04 / 0.02 / 0.60 / 225.0512 / 0.0051715 / VAF / 0.000003 / 0.000204 / 0.002065 / 0.16
5 / 0.38 / 0.15 / 0.01 / 0.02 / 0.33 / 397.4004 / 0.0002100 / RAF / 0.000000 / 0.000062 / 0.000624 / 0.22
10 / 0.16 / 0.06 / 0.00 / 0.02 / 0.24 / 481.3714 / 0.0006120 / KEF / 0.000000 / 0.000042 / 0.000421 / 0.03
15 / 0.09 / 0.04 / 0.00 / 0.02 / 0.19 / 523.2292 / 0.0000784 / OUL / 0.000000 / 0.000035 / 0.000352 / 0.43
30 / 0.03 / 0.01 / 0.00 / 0.01 / 0.09 / 583.4995 / 0.0000430 / SUF / 0.000000 / 0.000028 / 0.000281 / 0.66
45 / 0.01 / 0.01 / 0.00 / 0.00 / 0.05 / 597.655 / 0.0007235 / MEF / 0.000000 / 0.000027 / 0.000267 / 0.19
65 / 0.01 / 0.00 / 0.00 / 0.00 / 0.02 / 626.8921 / 0.0003542 / KAF / 0.000000 / 0.000024 / 0.000241 / 0.03
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 682.4607 / 0.0000566 / PVF / 0.000000 / 0.000020 / 0.000202 / 0.31
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 837.5316 / 0.0001039 / VJF / 0.000000 / 0.000013 / 0.000132 / 0.01
120 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01
240 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
480 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
960 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
1500 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
-5.941074 / 1.13389 / -0.0209 / 3.57704 / 3.41732 / 0.017304 / 2.03
log stand dev = / 0.50370
dy/dr(100) / -0.0348 / dy/dr(100) / -0.0348
c3 / -3.4810 / c3 / -2.0853
c1 / 2.7814 / c1 / -0.8934
Table 5 year2010 jun15 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation