Pentti Varpasuo/PVA Engineering Services, September 28, 2016, Report,Page 20 of 68

The validation of Varpasuo-Saari-Nikkari (2001) [4] GMPE equation for peak ground acceleration with the aid of the wave form registrations made by Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network during the years 2009-2016.

Pentti Varpasuo,

PVA Engineering Services

Introduction

The characteristics of ground motion insidec Baltic shield durind the past ten years was investigated in reference [1]. The following ten events that occurred inside the Baltic shield in the territory of Sweden and Finland and the corresponding seismograph recordings recorded at the Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network were utilized in this validation task and are listed in the following Table 1:

Date / Time (UTC) / Latitude / Longitude / Depth / Mw (Hel) / Event code
05/05/2009 / 21:55:28,6 / 63.679 / 0.54 / 21.487 / 3.4 / 2009125215528
15/06/2010 / 20:30:51,2 / 64.492 / 0.55 / 21.323 / 3.5 / 2010166203051
19/03/2011 / 11:21:53,3 / 60.563 / 0.59 / 25.300 / 2.6 / 2011078112153
19/09/2011 / 14:09:27,1 / 62.409 / 0.37 / 23.811 / 2.3 / 2011262140927
01/12/2011 / 06:04:13,6 / 60.902 / 0.36 / 26.672 / 2.8 / 2011335060413
22/12/2011 / 07:21:10,1 / 60.907 / 0.35 / 26.693 / 2.6 / 2011356072110
18/05/2012 / 19:57:04,8 / 65.350 / 0.64 / 23.855 / 2.8 / 2012139195704
02/10/2012 / 11:11:42,0 / 64.867 / 0.39 / 21.384 / 2.7 / 2012276111142
15/09/2014 / 13:08:00,5 / 61.648 / 0.47 / 14.255 / 4.2 / 2014258130800
19/03/2016 / 21:55:31,6 / 65.066 / 0.22 / 22.525 / 4.1 / 2016079215531

Table 1. Event list

In the following Figure 1 the location map of events as well as the location map and denotation of the Finnish National Seismograph Network is given [2], [3].

Figure 1. Location map of events and monitoring stations

In the following Table 2 the mechanical properties of rock at the monitoring stations are given:

Station / Lat / Lon / Altitude / Rock / Era / Epoch / Suite
OUF / 64.3 / 24.7 / 90 / Dolerite / Paleoproterozoic / Orosirian 4 / Korkatti
JOF / 62.9 / 31.3 / 180 / Diorite / Neoarchean / Archean 1 / Silvevaara
KAF / 62.1 / 26.3 / 195 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
KEF / 62.1 / 24.8 / 215 / Granite / Paleoproterozoic / Orosirian 3 / Lithodemes
KJN / 64.0 / 27.7 / 265 / Gabbro / Paleoproterozoic / Rhyacian 1 / Koli sill
MEF / 60.2 / 24.3 / 55 / Granite / Paleoproterozoic / Orosirian 6 / Granite
NUR / 60.5 / 24.6 / 102 / Gneiss / Paleoproterozoic / Rhyacian 1 / Migmatite
OUL / 65.0 / 25.8 / 62 / Quartzite / Paleoproterozoic / Rhyacian 1 / Koli sill
PVF / 60.5 / 25.8 / 45 / Diorite / Paleoproterozoic / Orosirian 4 / Plutonic
RAF / 61.0 / 21.7 / 30 / Granite / Mesoproterozoic / Calymmian 2 / Rapakivi
SUF / 62.7 / 26.1 / 190 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
VAF / 63.0 / 22.6 / 65 / Diorite / Paleoproterozoic / Orosirian 4 / Lithodemes
VJF / 60.5 / 27.5 / 20 / Viborgite / Mesoproterozoic / Statherian 4 / Rapakivi
RUFX / 61.4 / 28.9 / 138 / Diorite / Paleoproterozoic / Orosirian 4 / Plutonic
RMF / 64.2 / 29.9 / 220 / Tonalite / Neoarchean / Orosirian 4 / Haasianvaara
FIA0 / 61.4 / 26.0 / 150 / Tonalite / Paleoproterozoic / Orosirian 4 / Plutonic
FIA1 / 61.4 / 26.0 / 138 / Tonalite / Paleoproterozoic / Orosirian 4 / Plutonic
OBF0 / 64.4 / 24.2 / 25 / Granite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF1 / 64.4 / 24.0 / 25 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF2 / 64.6 / 24.4 / 30 / Volcanic / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF3 / 64.8 / 24.7 / 25 / Gneiss / Paleoproterozoic / Orosirian 3 / Näläntöjärvi
OBF4 / 64.8 / 25.1 / 40 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF5 / 64.4 / 25.2 / 80 / Gabbro / Paleoproterozoic / Orosirian 3 / Plutonic
OBF6 / 64.1 / 24.5 / 70 / Conglomerate / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF7 / 64.1 / 24.0 / 39 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes
OBF8 / 64.3 / 23.4 / 4 / Diorite / Paleoproterozoic / Orosirian 3 / Lithodemes

Table 2 Station list and lithology

In the following Table 3 the gain factors of the Finnish stations that recorded the investigated ten events are given in [2] and [3].

Station name Gain factor [m/s/count]

JOF 2.61E+9

KAF 1.74E+9

NUR 3.84E+9

OUL 3.18E+9

VAF 1.49E+9

KEF 1.50E+9

MEF 1.50E+9

PVF 2.02E+9

SUF 2.08E+9

VJF 1.20E+9

RAF 1.50E+9

OUF 1.50E+9

OBF0 7.49E+8

OBF1 7.49E+8

OBF2 7.49E+8

OBF3 7.49E+8

OBF4 7.49E+8

OBF5 7.49E+8

OBF6 7.49E+8

OBF7 7.49E+8

OBF8 5.99E+8

RMF 5.99E+8

RUFX 5.99E+8

Table 3 The gain factors of Finnish seismograph stations that recorded the investigated ten events. The meaning of the gain factor is that the so called count number recorded by the specific seismograph can be converted to velocity histories in meters per second bydividing the count number by gain factor [2].

In the following Figures 2-12 the 360 second acceleration time histories of the longitudinal component of the year2009-may05 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000.

Figure 1 Year2009-may05-event-acc-time-hist-at-JOF(m/s/s)-max=0.000053

Figure 3 Year2009-may05-event-acc-time-hist-at-KAF(m/s/s)-max=0.000354

Figure 2 year2009-may05-event-acc-time-hist-at-KEF(m/s/s)-max=0.000612

Figure 3 year2009-may05-event-acc-time-hist-at-MEF(m/s/s)-max=0.000078

Figure 4 year2009-may05-event-acc-time-hist-at-OUL(m/s/s)-max=0.000043

Figure 5 year2009-may05-event-acc-time-hist-at-PVF(m/s/s)-max=0.000057

Figure 8 year2009-may05-event-acc-time-hist-at-RAF(m/s/s)-max=0.000021

Figure 9 year2009-may05-event-acc-time-hist-at-SUF(m/s/s)-max=0.000072

Figure 6 year2009-may05-event-acc-time-hist-at-VAF(m/s/s)-max=0.005171

Figure 11 year2009-may05-event-acc-time-hist-at-VJF(m/s/s)-max=0.000103

In the following Figures 12-20 the 360 second acceleration time histories of the longitudinal component of the year2010-jun15 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 12 year2010-jun15-event-acc-time-hist-at-KAF(m/s/s)-max=0.000317

Figure 13 year2010-jun15-event-acc-time-hist-at-KEF(m/s/s)-max=0.000382

Figure 14 year2010-jun15-event-acc-time-hist-at-MEF(m/s/s)-max=0.000084

Figure 15 year2010-jun15-event-acc-time-hist-at-OUL(m/s/s)-max=0.000233

Figure 76 year2010-jun15-event-acc-time-hist-at-PVF(m/s/s)-max=0.000054

Figure 87 year2010-jun15-event-acc-time-hist-at-RAF(m/s/s)-max=0.000265

Figure 98 year2010-jun15-event-acc-time-hist-at-SUF(m/s/s)-max=0.000680

Figure 109 year2010-jun15-event-acc-time-hist-at-VAF(m/s/s)-max=0.002202

Figure 20 year2010-jun15-event-acc-time-hist-at-VJF(m/s/s)-max=0.000118

In the following Figures 21-29 the 360 second acceleration time histories of the longitudinal component of the year2011-mar19 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 21 year2011-mar19-event-acc-time-hist-at-KEF(m/s/s)-max=0.000695

Figure 22 year2011-mar19-event-acc-time-hist-at-MEF(m/s/s)-max=0.003307

Figure 23 year2011-mar19-event-acc-time-hist-at-OUL(m/s/s)-max=0.000006

Figure 24 year2011-sep19-event-acc-time-hist-at-RAF(m/s/s)-max=0.000555

Figure 25… year2011-mar19-event-acc-time-hist-at-SUF(m/s/s)-max=0.000282

Figure 26…year2011-mar19-event-acc-time-hist-at-VAF(m/s/s)-max=0.000074

Figure 27 year2011-mar19-event-acc-time-hist-at-VJF(m/s/s)-max=0.002835

Figure 28 year2011-mar19-event-acc-time-hist-at-JOF(m/s/s)-max=0.000030

Figure 29 year2011-mar19-event-acc-time-hist-at-PVF(m/s/s)-max=0.003977

In the following Figures 30-38 the 360 second acceleration time histories of the longitudinal component of the year2011-sep19 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 30 year2011-sep19-event-acc-time-hist-at-KEF(m/s/s)-max=0.000678

Figure 31 year2011-sep19-event-acc-time-hist-at-MEF(m/s/s)-max=0.000075

Figure 32 year2011-sep19-event-acc-time-hist-at-OUL(m/s/s)-max=0.000004

Figure 33 year2011-sep19-event-acc-time-hist-at-RAF(m/s/s)-max=0.000092

Figure 34 year2011-sep19-event-acc-time-hist-at-SUF(m/s/s)-max=0.000256

Figure 35 year2011-sep19-event-acc-time-hist-at-VAF(m/s/s)-max=0.000469

Figure 36 year2011-sep19-event-acc-time-hist-at-KAF(m/s/s)-max=0.000169

Figure 37 year2011-sep19-event-acc-time-hist-at-JOF(m/s/s)-max=0.000008

Figure 38 year2011-sep19-event-acc-time-hist-at-PVF(m/s/s)-max=0.000032

In the following Figures 39-49 the 360 second acceleration time histories of the longitudinal component of the year2011-dec01 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 39 year2011-dec01-event-acc-time-hist-at-KEF(m/s/s)-max=0.000431

Figure 40 year2011-dec01-event-acc-time-hist-at-MEF(m/s/s)-max=0.000430

Figure 41 year2011-dec01-event-acc-time-hist-at-OUL(m/s/s)-max=0.000008

Figure 42 year2011-dec01-event-acc-time-hist-at-OUF(m/s/s)-max=0.000045

Figure 43 year2011-dec01-event-acc-time-hist-at-RAF(m/s/s)-max=0.000141

Figure 44 year2011-dec01-event-acc-time-hist-at-SUF(m/s/s)-max=0.000324

Figure 45 year2011-dec01-event-acc-time-hist-at-VAF(m/s/s)-max=0.000079

Figure 46 year2011-dec01-event-acc-time-hist-at-KAF(m/s/s)-max=0.000638

Figure 47 year2011-dec01-event-acc-time-hist-at-JOF(m/s/s)-max=0.000070

Figure 48 year2011-dec01-event-acc-time-hist-at-PVF(m/s/s)-max=0.000234

Figure 119 year2011-dec01-event-acc-time-hist-at-VJF(m/s/s)-max=0.001563

In the following Figures 50-60 the 360 second acceleration time histories of the longitudinal component of the year2011-dec22 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 50 year2011-dec22-event-acc-time-hist-at-KEF(m/s/s)-max=0.000229

Figure 51 year2011-dec22-event-acc-time-hist-at-MEF(m/s/s)-max=0.000446

Figure 52 year2011-dec22-event-acc-time-hist-at-OUL(m/s/s)-max=0.000005

Figure 53 year2011-dec22-event-acc-time-hist-at-OUF(m/s/s)-max=0.000025

Figure 54 year2011-dec22-event-acc-time-hist-at-RAF(m/s/s)-max=0.000140

Figure 55 year2011-dec22-event-acc-time-hist-at-SUF(m/s/s)-max=0.000145

Figure 56 year2011-dec22-event-acc-time-hist-at-VAF(m/s/s)-max=0.000069

Figure 57 year2011-dec22-event-acc-time-hist-at-KAF(m/s/s)-max=0.000638

Figure 58 year2011-dec22-event-acc-time-hist-at-JOF(m/s/s)-max=0.000023

Figure 59 year2011-dec22-event-acc-time-hist-at-PVF(m/s/s)-max=0.000350

Figure 60 year2011-dec22-event-acc-time-hist-at-VJF(m/s/s)-max=0.001171

In the following Figures 61-69 the 360 second acceleration time histories of the longitudinal component of the year2012-may18 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 61 year2012-may18-event-acc-time-hist-at-KEF(m/s/s)-max=0.000581

Figure 62 year2012-may18-event-acc-time-hist-at-MEF(m/s/s)-max=0.000132

Figure 63 year2012-may18-event-acc-time-hist-at-OUL(m/s/s)-max=0.000380

Figure 64 year2012-may18-event-acc-time-hist-at-OUF(m/s/s)-max=0.002125

Figure 65 year2012-may18-event-acc-time-hist-at-RAF(m/s/s)-max=0.000127

Figure 66 year2012-may18-event-acc-time-hist-at-VAF(m/s/s)-max=0.000498

Figure 67 year2012-may18-event-acc-time-hist-at-JOF(m/s/s)-max=0.000082

Figure 68 year2012-may18-event-acc-time-hist-at-PVF(m/s/s)-max=0.000350

Figure 69 year2012-may18-event-acc-time-hist-at-VJF(m/s/s)-max=0.000341

In the following Figures 70-78 the 360 second acceleration time histories of the longitudinal component of the year2012-oct02 event recorded at the stations of Table 1 are given. The resolution in the time histories is 0.01 s so that the number of recorded points in each history is 36 000

Figure 70 year2012-oct02-event-acc-time-hist-at-KEF(m/s/s)-max=0.000102

Figure 71 year2012-oct02-event-acc-time-hist-at-MEF(m/s/s)-max=0.000035

Figure 72 year2012-oct02-event-acc-time-hist-at-OUF(m/s/s)-max=0.000648

Figure 73 year2012-oct02-event-acc-time-hist-at-RAF(m/s/s)-max=0.000043

Figure 74 year2012-oct02-event-acc-time-hist-at-SUF(m/s/s)-max=0.000214

Figure 75 year2012-oct02-event-acc-time-hist-at-VAF(m/s/s)-max=0.000434

Figure 76 year2012-oct02-event-acc-time-hist-at-JOF(m/s/s)-max=0.000041

Figure 77 year2012-oct02-event-acc-time-hist-at-PVF(m/s/s)-max=0.000011

Figure 78 year2012-oct02-event-acc-time-hist-at-VJF(m/s/s)-max=0.000094

In the following Figures 79-90 the 900 second acceleration time histories of the longitudinal component of the year2014-sep15 (Sveg) event recorded at the stations of Table 1 are given. The resolution in part of the time histories is 0.01 s and so that the number of recorded points in each history of this part is 90000 and 0.004 s in part of the time histories (OBF0 and OBF4) so that the number of recorded points in each history of this part is 225000.

Figure 79 year2014-sep15-(Sveg)-event-acc-time-hist-at-KAF(m/s/s)-max=0.000248

Figure 80 year2014-sep15-(Sveg)-event-acc-time-hist-at-KEF(m/s/s)-max=0.000427

Figure 81 year2014-sep15-(Sveg)-event-acc-time-hist-at-MEF(m/s/s)-max=0.000435

Figure 82 year2014-sep15-(Sveg)-event-acc-time-hist-at-OUL(m/s/s)-max=0.000077

Figure 83 year2014-sep15-(Sveg)-event-acc-time-hist-at-PVF(m/s/s)-max=0.000187

Figure 84 year2014-sep15-(Sveg)-event-acc-time-hist-at-RAF(m/s/s)-max=0.000871

Figure 85 year2014-sep15-(Sveg)-event-acc-time-hist-at-SUF(m/s/s)-max=0.000330

Figure 86 year2014-sep15-(Sveg)-event-acc-time-hist-at-VAF(m/s/s)-max=0.000563

Figure 87 year2014-sep15-(Sveg)-event-acc-time-hist-at-VJF(m/s/s)-max=0.000208

Figure 88 year2014-sep15-(Sveg)-event-acc-time-hist-at-OBF0(m/s/s)-max=0.000609

Figure 89 year2014-sep15-(Sveg)-event-acc-time-hist-at-OBF4(m/s/s)-max=0.000300

Figure 12 year2014-sep15-(Sveg)-event-acc-time-hist-at-OUF(m/s/s)-max=0.000711

In the following Figures 91-110 the 360 second acceleration time histories of the longitudinal component of the year2016-mar19 (Gulf of Bothnia) event recorded at the stations of Table 1 are given. The resolution in part of the time histories is 0.01 s and so that the number of recorded points in each history of this part is 36 000 and 0.004 s in part of the time histories (OBF0 OBF1 OBF2 OBF3 OBF4 OBF5 OBF6 OBF7 OBF8 RMF and RUFX) so that the number of recorded points in each history of this part is 90 000.

Figure 91 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-KAF(m/s/s)-max=0.001270

Figure 92 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-KEF(m/s/s)-max=0.001001

Figure 93 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-MEF(m/s/s)-max=0.000302

Figure 94 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OUL(m/s/s)-max=0.001119

Figure 95 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF0(m/s/s)-max=0.01923364

Figure 96 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RAF(m/s/s)-max=0.000878

Figure 97 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-SUF(m/s/s)-max=0.001169

Figure 98 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-VAF(m/s/s)-max=0.003975

Figure 99 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-VJF(m/s/s)-max=0.000502

Figure 100 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF1(m/s/s)-max=0.012739

Figure 101 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF4(m/s/s)-max=0.005863

Figure 102 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OUF(m/s/s)-max=0.012406

Figure 103 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF2(m/s/s)-max=0.016851

Figure 104 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF3(m/s/s)-max=0.017157

Figure 105 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF5(m/s/s)-max=0.006900

Figure 106 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF6(m/s/s)-max=0.009517

Figure 107 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF7(m/s/s)-max=0.011203

Figure 108 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-OBF8(m/s/s)-max=0.011441

Figure 109 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RMF(m/s/s)-max=0.010150

Figure 110 year2016-mar19-(Gulf of Bothnia)-event-acc-time-hist-at-RUFX(m/s/s)-max=0.000575

In the following Tables 4,5,6,7,8,9.10.11.12 and 13 and in the following Figures 111-120 the attenuation fit of of the ten acceleration registrations made by Helsinki University Institute of Seismology in the stations of Finnish National Seismic Network during the years 2009-2016 with the Varpasuo-Saari-Nikkari (2001) [4] GMPE equation for peak ground acceleration is given.

km / 5.8 / 5 / 3.4 / 3.4 / weighted 0_6*tsaguenay + 0_4*tnewcastle year2009 may05 / dist(km) / year2009 may05 m 3_4 lon comp pga in m/s/s / station / 3.4 / 3.4 / weighted 0_6 * saguenay + 0_4 * newcastle
1 / 1.44 / 0.55 / 0.03 / 0.02 / 0.53 / 152.6061 / 0.0051715 / VAF / 0.000010 / 0.000406 / 0.004157 / 0.01
5 / 0.38 / 0.15 / 0.01 / 0.02 / 0.29 / 303.3342 / 0.0002100 / RAF / 0.000000 / 0.000097 / 0.000972 / 0.44
10 / 0.16 / 0.06 / 0.00 / 0.02 / 0.22 / 420.301 / 0.0006120 / KEF / 0.000001 / 0.000049 / 0.000500 / 0.01
15 / 0.09 / 0.04 / 0.00 / 0.01 / 0.17 / 513.1461 / 0.0000784 / MEF / 0.000000 / 0.000032 / 0.000325 / 0.38
30 / 0.03 / 0.01 / 0.00 / 0.01 / 0.08 / 524.8457 / 0.0000430 / OUL / 0.000000 / 0.000031 / 0.000310 / 0.74
45 / 0.01 / 0.01 / 0.00 / 0.00 / 0.04 / 539.9695 / 0.0007235 / SUF / 0.000000 / 0.000029 / 0.000292 / 0.15
65 / 0.01 / 0.00 / 0.00 / 0.00 / 0.02 / 575.0648 / 0.0003542 / KAF / 0.000000 / 0.000026 / 0.000256 / 0.02
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 610.3854 / 0.0000566 / PVF / 0.000000 / 0.000023 / 0.000226 / 0.36
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 775.2292 / 0.0001039 / VJF / 0.000000 / 0.000014 / 0.000137 / 0.01
120 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 1117.706 / 0.0000561 / JOF / 0.000000 / 0.000006 / 0.000064 / 0.00
240 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
480 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
960 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
1500 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
-5.941074 / 1.13389 / -0.0209 / 3.5770448 / 3.4173206 / 0.017304 / 2.13
log stand dev = / 0.48678
dy/dr(100) / -0.0348 / dy/dr(100) / -0.034810
c3 / -3.4810 / c3 / -2.085317
c1 / 2.7814 / c1 / -0.893364

Table 4 year2009 may05 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation

Figure 111 year2009 may05 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation

km / 5.8 / 5 / 3.5 / 3.5 / weighted 0_6 * tsaguenay + 0_4 * tnewcastle year2010 jun15 / dist(km) / year2010 jun15 m 3_5 lon comp pga in m/s/s / station / 3.5 / 3.5 / weighted 0_6 * tsaguenay + 0_4 * tnewcastle
1 / 1.44 / 0.55 / 0.04 / 0.02 / 0.60 / 225.0512 / 0.0051715 / VAF / 0.000003 / 0.000204 / 0.002065 / 0.16
5 / 0.38 / 0.15 / 0.01 / 0.02 / 0.33 / 397.4004 / 0.0002100 / RAF / 0.000000 / 0.000062 / 0.000624 / 0.22
10 / 0.16 / 0.06 / 0.00 / 0.02 / 0.24 / 481.3714 / 0.0006120 / KEF / 0.000000 / 0.000042 / 0.000421 / 0.03
15 / 0.09 / 0.04 / 0.00 / 0.02 / 0.19 / 523.2292 / 0.0000784 / OUL / 0.000000 / 0.000035 / 0.000352 / 0.43
30 / 0.03 / 0.01 / 0.00 / 0.01 / 0.09 / 583.4995 / 0.0000430 / SUF / 0.000000 / 0.000028 / 0.000281 / 0.66
45 / 0.01 / 0.01 / 0.00 / 0.00 / 0.05 / 597.655 / 0.0007235 / MEF / 0.000000 / 0.000027 / 0.000267 / 0.19
65 / 0.01 / 0.00 / 0.00 / 0.00 / 0.02 / 626.8921 / 0.0003542 / KAF / 0.000000 / 0.000024 / 0.000241 / 0.03
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 682.4607 / 0.0000566 / PVF / 0.000000 / 0.000020 / 0.000202 / 0.31
100 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01 / 837.5316 / 0.0001039 / VJF / 0.000000 / 0.000013 / 0.000132 / 0.01
120 / 0.00 / 0.00 / 0.00 / 0.00 / 0.01
240 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
480 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
960 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
1500 / 0.00 / 0.00 / 0.00 / 0.00 / 0.00
-5.941074 / 1.13389 / -0.0209 / 3.57704 / 3.41732 / 0.017304 / 2.03
log stand dev = / 0.50370
dy/dr(100) / -0.0348 / dy/dr(100) / -0.0348
c3 / -3.4810 / c3 / -2.0853
c1 / 2.7814 / c1 / -0.8934

Table 5 year2010 jun15 event fit to Varpasuo, Saari, Nikkari (2001) [4] GMPE equation