Activity 5.1 Calculating Properties of Shapes

Introduction

If you were given the responsibility of painting a room, how would you know how much paint to purchase for the job? If you were told to purchase enough carpet to cover all the bedroom floors in your home, how would you communicate the amount of carpet needed to the salesperson? If you had to place an order for new shingles for the roof of your home, how would you determine the number of shingles needed? Aside from the fact that each of these questions deals with home improvement issues, they all center on the concept of area.

Area describes the measure of a two-dimensional surface. One example of how area is used in engineering is the calculation of stress that develops in an object that is subjected to an external load. If you have ever stretched a rubber band to the point that it breaks, then you have applied an external load to an object that has a constant cross-sectional area. In doing so, you caused stress to build up inside the rubber band until it broke. Another example of how area is used in engineering is the calculation of beam deflection. If you have ever walked across a fallen tree in an effort to cross a creek, then you have experienced the concept of deflection. If the tree had a small diameter, then the amount of deflection would be significant and noticeable. If the tree had a large trunk, then the amount of deflection was probably too small to feel or notice.

Equipment

·  Engineering notebook

·  Pencil

·  Calculator

Procedure

In this activity you will broaden your knowledge of shapes and your ability to sketch them. You will also learn how to calculate the dimensions and area of a shape. Use points, construction lines, and object lines to sketch the shapes described in the first seven word problems. Use the notes contained in your engineering notebook to help you perform the necessary calculations. Calculator use is encouraged, but you must show all of your work.

Project Lead The Way, Inc. ● Copyright 2012 ● IED – Activity 5.1– Calculating Properties of Shapes – Page 1

1.  Use the sketch below to calculate the area of the square. Add all linear dimensions to the sketch that were used in the calculations. Note: each grid unit = 1 inch.

2.  The area of the square represented above is revised to be 90.25 in.2. Note that the original grid spacing no longer applies.

  1. What is the side length of the square?
  1. Using this length, what is the corresponding grid spacing for the sketch?

3.  Complete the sketch of the rectangle. It must have an area of 2.25 in.2. Prove the geometry by dimensioning the sketch and showing the area calculation. Show only those dimensions needed for the area calculation. Note: each grid unit = .25 inch.

Project Lead The Way, Inc. ● Copyright 2012 ● IED – Activity 5.1– Calculating Properties of Shapes – Page 1

3.  Use the sketch below to calculate the area of the rhomboid. Add linear dimensions to the sketch that were used in the area calculation. Note: each grid unit = 1 inch.

4.  Complete the sketch of the obtuse triangle. It must have an area of 1.75 in.2. Prove the geometry by dimensioning the sketch and showing the area calculation. Show only those dimensions needed for the area calculation. Note: each grid unit = .25 inch.

Project Lead The Way, Inc. ● Copyright 2012 ● IED – Activity 5.1– Calculating Properties of Shapes – Page 1

5.  Use the sketch below to calculate the area of the circle. Add any dimensions to the sketch that were used to calculate the area. Note: each grid unit = .25 inch.

6.  An ellipse has an area of 4.71 in.2 and a minor axis that is 2 in. long. Solve for the major axis, and then sketch the ellipse using that dimension. Show only those dimensions needed for the area calculation. Note: each grid unit = .25 inch.

Project Lead The Way, Inc. ● Copyright 2012 ● IED – Activity 5.1– Calculating Properties of Shapes – Page 1

7.  The area of the circle represented above is revised to be 15.90 in.2. Note that the original grid spacing no longer applies.

  1. What is the radius of the circle?
  1. Using this length, what is the corresponding grid spacing for the sketch?

8.  An octagon has an area of 80 in.2 and sides that measure 4 in. Sketch the octagon and prove the geometry by dimensioning the sketch and showing the area calculation. Show only those dimensions needed for the area calculation. Note: each grid unit = 1 inch.

Extending your Learning

9.  The sketch shown below is for a commercial sign. It was drawn to 1/10 of its true size. What is the area of the actual sign? Prove your answer by showing all calculations. Note: each grid unit = 1 inch.

Conclusion

1.  What is the difference between a circle and an ellipse?

2.  What is the difference between an inscribed and a circumscribed shape?

3.  Why is it impossible for a triangle to contain a 180° angle?

4.  How is a rhombus similar to a square?

5.  What is the difference between a right, acute, and obtuse triangle?

Project Lead The Way, Inc.

Copyright 2012

DRAFT – DO NOT COPY OR DISTRIBUTE

IED – Activity 5.1 Calculating Properties of Shapes – Page 8