SUPPORTING MATERIAL

TABLE S1 – Model parameters and their sources

Soil Physics

Volumetric water content: 24% (Measured)

Soil density: 1.45 g cm-3 (Adjusted)

Soil impedance factor: 0.34 (Estimated using the Millington-Quirk model)

Water flux: derived from plant transpiration in compartment system experiments (Szegedi, 2009)

Geometry: linear

Soil chemistry – Initial concentrations (before calculating initial soil solution equilibrium)

Solute Diffusion coefficient (cm2 s-1) Initial concentration (mM cm-3)

from phreeqcd.dat and from (based on modelling initial

the CRC Handbook of Physics soil solution samples)

and Chemistry

H2PO4- 0.846 x10-5 7.7 x10-4

Ca+2 0.793 x10-5 3 x10-4 (will increase as gypsum dissolves)

SO4-2 1.07 x10-5 3 x10-4 (will increase as gypsum dissolves)

NO3- 1.9e x10-5 10.85 x10-3

AmmH+ 1.98 x10-5 17.66 x10-3 (set to maintain electroneutrality)

Cl- 2.03 x10-5e-5 1.62 x10-2

K+ 1.96 x10-5 6.67 x10-3

CitrateH-2 0.623 x10-5 0

Fe+3 8.46 x10-5 0.025 x10-3

H2AsO4- 0.905 x10-5 1.22 x10-4

Edta-4 8.46 x10-5 0.025 x10-3

Mg+2 0.705 x10-5 1.90 x10-3

FeEdta- 8.46 x10-5 0

H+ 9.31 x10-5 2.5x10-6 / 0.95x10-6 (G-1/G-4)

FeEdta Assumed to be transported and taken up together (almost all Fe and EDTA exist in complexed form

Soil chemistry – Initial phases

Phase Saturation index Amount (M l-1)

Gypsum 0.0 0.015

CO2(g) -3.5 (partial pressure) 10

Soil chemistry – Sorption parameters

Binding site Amount per g goethite

Hfo_w 5.83 x10-5

Hfo_s 1.45 x10-6

Soil chemistry – stoichiometric reactions and their equilibrium constants (the reduced database, PHREEQC formulation, without the definition of species included in table 1, wihout gamma values) The tableau method (Morel and Hering, 1993) was used to reformulate the stoichiometric reactions by making dominant species to be master species.

SOLUTION_SPECIES

H2O = OH- + H+ # Source: minteq.dat

log_k -13.998

delta_h 13.345 kcal

-gamma 3.5 0

CO3-2 + H+ = HCO3- # Source: minteq.dat

log_k 10.33

delta_h -3.617 kcal

CO3-2 + 2H+ = H2CO3 # Source: minteq.dat

log_k 16.681

3H+ + Edta-4 = EdtaH3- # Source: minteq.dat

log_k 18.86

delta_h 0 kcal

Fe+3 + Edta-4 = FeEdta- # Source: minteq.dat

log_k 27.7

PHASES ##########################################################

Gypsum # Source: Bennett and Adams (1972) Soil Sci Soc Am Proc 36:288-291.

CaSO4:2H2O = + 1.0000 Ca++ + 1.0000 SO4-- + 2.0000 H2O

log_k -4.53

CaHPO4 # Derived from llnl.dat using the tableu method

CaHPO4 + H+ = Ca+2 + H2PO4-

log_k -0.437

CO2(g) # minteq.dat

CO2 + H2O = CO3-2 + 2H+

log_k -18.16

O2(g) # minteq.dat

O2 = O2

log_k -2.8983

SURFACE_SPECIES

Hfo_sOH2+ + H2PO4- = Hfo_sH2PO4 + H2O # Derived from phreeqc.dat using the tableu method

log_k = 4.45

Hfo_wOH2+ + H2PO4- = Hfo_wH2PO4 + H2O # Derived from phreeqc.dat using the tableu method

log_k = 4.45

Hfo_wH2PO4 + H2AsO4- = Hfo_wH2AsO4 + H2PO4- # Derived from optimized values using

log_k = 0.6168 # the tableu method

Hfo_wH2PO4 + CitrateH-2 = Hfo_wCitrateH- + H2PO4-

log_k = 12.8

Hfo_wH2AsO4 + CitrateH-2 = Hfo_wCitrateH- + H2AsO4-

log_k = -0.12

Hfo_wOH2+ + CitrateH-2 = Hfo_wCitrateH- + H2O

log_k = 16.8

Hfo_wOH2+ + CO3-2 + H+ = Hfo_wHCO3 + H2O # Derived after Appelo et al (2002) Environ Sci and

log_k = 14.03 # Technol 36:3096-3103 using the tableu method

Root uptake (Parameters of the Michaelis Menten kinetics)

Solute *Jmax(mM cm-1 s-1) Km (mM cm-3) Cmin(mM cm-3) Source

H2PO4- 1e-9 16e-6 2e-7 Jungk & Barber (1975)

Ca+2 8.5e-9 3.9e-5 0 Barber (1995)

SO4-2 5e-9 2.8e-5 0 Barber (1995)

NO3- 0.9e-8 1e-5 4e-6 Barber (1995)

AmmH+ 1e-9 5.39e-5 0 Barber (1995)

Cl- 3.5e-8 1e-6 0 Maas and Ogata (1971)

K+ 1.2e-8 1.5e-5 3e-6 Claassen and Barber (1974)

Fe+3 7.5e-12 1e-6 0 Barber (1995)

H2AsO4- 2.98e-9 2.4e-5 0 Abbas and Meharg (2008)

Edta-4 7.5e-12 1e-6 0 Barber (1995)

Mg+2 1e-9 1.5e-5 0 Barber (1995)

FeEdta- 7.5e-12 1e-6 0 Barber (1995)

*Adjusted to achieve the best model performance

3