Name ______Period ______Date ______R# ______

Study Guide for Physics Test over one dimensional motion

First you need to know the answer to the following question:

What is the definition of Physics that Mr. Strawn prefers?

Physics is the study of matter and energy and the interactions that occur between them.

Second, you need to know the S.I. prefixes from Giga (G) to nano (n). You need to know the number associated with each prefix.

Example Problem 1 for Average Velocity

A car drives along the highway at 115 km/h for 2.50 h.Once in the city, the car drives at 60.0 km/h for the next 0.500 h.Determinethe average velocity of the car.

The average velocity is based on the total displacement of thecar for the entire time it was moving, so we first need to figureout the total displacement and the total time.

First part of the drive... Second part of the drive...

So, in total, the car moved 317.5 km in 3.00 h. Its average velocity is...

Practice problem 1 for Average Velocity

An automobile travels on a straight road for 40 km at 30 km/h. It then continues in the same direction for another 40km at 60km/h. What is the average velocity of the car during this 80 km trip?

Example Problem 2 for Constant Acceleration

A bus that is traveling at 30.0 km/h speeds up at a constant rate of 3.5 m/s2. What velocity does it reach 6.8 s later?

Example Problem 3 for Constant Acceleration

A car slows from 22 m/s to 3.0 m/s at aconstant rate of 2.1 m/s2. How manyseconds are required before the car istraveling at 3.0 m/s?

Example Practice Problem 2

An airplane accelerated uniformly from rest at the rate of 5.0m/s2 for 14 s. What final velocity did it attain?

Answer = 7.0 x 101 m/s

Example Problem 4

A car moving westward along a straight, level road increases its velocity uniformly from +16 m/s to+32 m/s in 10.0 s.

  1. What is the car’s acceleration?
  1. What is its average velocity?

c. How far did it move while accelerating?

Practice Problem 3

A snowmobile has an initial velocity of +3.0 m/s..

a. If it accelerates at the rate of +0.50 m/s2 for7.0 s, what is the final velocity?

Answer = 6.5 m/s

  1. If it accelerates at the rate of −0.60 m/s2, howlong will it take to reach a complete stop?

Answer 5.0 seconds

Example Problem 5

A car accelerates from rest at −3.00 m/s2.

  1. What is the velocity at the end of 5.0 s?

b. What is the displacement after 5.0 s?

Free Fall Problems

Example Problem 6

A ball is thrown vertically upward with the speed of 25.0 m/s from a height of 2.0 m.

a. How long does it take to reach its highest point?

  1. How long does the ball take to hit the ground after it reaches its highest point?

Practice Problems 4

A tennis ball is thrown straight up with an initial speed of 22.5 m/s. It is caught at the same distance above the ground.

How high does the ball rise?

Answer = 25.8 meters

How long does the ball remain in the air? Hint: The time it takes the ball to rise equals the time it takes to fall.

Answer = 4.60 seconds

Study your Graphing Flash Cards and Know what the different shapes on the three different graphs mean.

Position verses Time Graphs, Velocity verses Time Graphs, and

Acceleration verses Time Graphs

Illustration 1: d-t graph of a person running a marathon.

From Zero to 90s

Look at how you are running in those first 90 seconds.

Every 30 seconds you have moved about another

150m away from the starting point… you must be

moving at a constant positive velocity!

A constant positive velocity is shown on a d-t graph

as a straight line that slopes upwards. It is a linear

relationship.

From 90s to 150s

Yikes! You ran too fast at the start and now you’re out of

breath!

During this time period, your position on the graph

has stayed the same…450m.

This just means that you are standing in the same

spot, exactly 450m away from where you started.

A flat horizontal line means you are stopped.

From 150s to 240s

You must have started running forward again, since a positively sloped line means a positive velocity. Notice that this section of line is a little steeper than the first section. You are now running about 200m every 30s. A steeper line (which has a bigger slope) means that you are moving at a faster constant velocity.

From 240s to 300s

In this section the line slopes down, which means it has a negative slope.

Since slope is equal to velocity, this must mean that you are running backwards.

A negative slope means a constant negative velocity.

You must have forgotten to pass a check point, so you ran back to it.

From 300s to 360s

Again, we have a horizontal line. You must be stopped.

From 360s to 510s

You know that you have only one chance to still win the race… run as fast as you can!

During this time period, the line curves upwards.

The line becomes steeper and steeper as it continues. This means that the slope of the line is

getting bigger and bigger.