Supporting Information

Mechanisitic Investigation on Methanol to Propene Conversion Catalyzed by H-Beta Zeolite: A Two-Layer ONIOM Study

Yingxin Sun,*† and Sheng Han*†

†School of Chemical and Environmental Engineering, Shanghai Institute of Technology

E-mail: , and


Table S1 The calculated relative energies of H-Beta zeolite for four different acidic proton positions at the level of ONIOM(MP2(8T(6-311+G(d,p)): 8T(6-31G(d,p))):UFF).

ONIOM(MP2(8T(6-311+G(d,p)):
8T(6-31G(d,p))):UFF) / Relative Energy
(kJ/mol)
Hbeta (Oa-H) / 0.00
Hbeta (Ob-H) / 20.59
Hbeta (Oc-H) / 75.16
Hbeta (Od-H) / 23.09

Table S2 S value test for the representative transition state structures

Reactant Connectivity / Product Connectivity / ΔSMM
TS-Hbeta-CH3OH-1-PMB / 111.956575 / 73.570835 / -38.385740 / -1.545456 / -39.931196 / -38.385740 / 0.000000
TS-HBeta-CH3OH-HMB / 110.681107 / 72.294590 / -38.386517 / -1.409527 / -39.796043 / -38.386517 / 0.000000
TS-CH2-CH-CH3-HMB-CH3CH3 / 33.820431 / -4.571554 / -38.391984 / 5.153136 / -33.238848 / -38.391984 / 0.000000
TS-CH2-CH2-HMB-CH3CH3 / 50.457165 / 12.068374 / -38.388791 / 1.836745 / -36.552045 / -38.388791 / 0.000000

Table S3 The activation barrier of TS3 and reaction energy (ΔE) (kJ/mol) for methylation step of HMB and decompositions in QM and MM contributions

E(kJ/mol) / QM / MM / ONIOM / Literature
TS3 / 118.18
(139.41)a / -15.80 / 102.38
(123.61) / 144.0b
ΔE / 30.07
(40.03) / -28.67 / 1.40
(11.36)

a The energy values in parentheses are obtained at the M06-2X level. b Literature value at ONIOM(B3LYP/6-31+g(d):HF/6-31+g(d))//ONIOM(B3LYP/6-31+g(d):MNDO) level of theory, see ref 18.


Table S4 The activation barrier of TS4 and reaction energy (ΔE) (kJ/mol) for prontonation step of HMMC and decompositions in QM and MM contributions

E(kJ/mol) / QM / MM / ONIOM
TS4 / 30.31
(32.69)a / -10.71 / 19.60
(21.99)
ΔE / -19.58
(-21.82) / -27.29 / -46.87
(-49.10)

a The energy values in parentheses are obtained at the M06-2X level.

(a) (b)

(c) (d)

Fig. S1 Optimized structures of (a) TS7, (b) INT-7, (c) complex-5, and (d) TS8.

(a) (b)

(c) (d)

Fig. S2 Optimized structures of (a) TS10, (b) TS11, (c) TS12, and (d) INT-1.