Interval Estimation

Chapter 8

Interval Estimation

Solutions:

5.a.

b.

c.34.80  1.4 or (33.40 to 36.20)

6.a. 369

b.s = 50

c.369  1.96 (50/)

369  6.20 (362.8 to 375.2)

7.

3.37  1.96

3.37  .05(3.32 to 3.42)

8.a.

12,000  1.645

12,000  231 (11,769 to 12,231)

b.12,000  1.96

12,000  275(11,725 to 12,275)

c.12,000  2.576

12,000  362 (11,638 to 12,362)

d.Interval width must increase since we want to make a statement about  with greater confidence.

9.a.Using Excel, = $12.41

b.Using Excel, s = 3.64

c. 1.96

12.41  1.96

12.41  0.92(11.49 to 13.33)

10.

7.75  .50(7.25 to 8.25)

11.a.Using Excel we obtained a sample mean of = 6.34 and a sample standard deviation of 2.163. The confidence interval is shown below:

6.34  1.96 (2.163 /)

6.34  .60

The 95% confidence interval estimate is 5.74 to 6.94.

12.a.minutes

b.minutes

Margin of Error = minutes

c.

3.8  .81 (2.99 to 4.61)

13.a..95

b..90

c..01

d..05

e..95

f..85

14.a.1.734

b.-1.321

c.3.365

d.-1.761 and +1.761

e.-2.048 and +2.048

18.a.

b.

c.t.025 = 2.201

 t.025

1.58  2.201

1.58  .09(1.49 to 1.67)

19.

 t.025

6.53  2.093

6.53  .25(6.28 to 6.78)

20.a.22.4  1.96

22.4  1.25(21.15 to 23.65)

b.With df = 60, t.025 = 2.000

22.4  2

22.4  1.28(21.12 to 23.68)

c.Confidence intervals are essentially the same regardless of whether z or t is used.

21.

t.025 = 2.365

 t.025

108  2.365

108  8.08(99.92 to 116.08)

25.a.

b.

26.a. Use 340

b. Use 1358

c. Use 8487

29.a.

b.

30.

31 .a. = 100/400 = 0.25

b.

c.

.25  1.96 (.0217)

.25  .0424(.2076 to .2924)

32.a..70  1.645

.70  .0267(.6733 to .7267)

b..70  1.96

.70  .0318(.6682 to .7318)

33.

34.Use planning value p = .50

35.a. = 562/814 = 0.6904

b.

c.0.6904  0.0267 (0.6637 to 0.7171)

36.a. = 152/346 = .4393

b.

.4393  1.96(.0267)

.4393  .0523 (.3870 to .4916)

37., = 182/650 = .28

.28  1.96

0.28  0.0345 (0.2455 to 0.3145)

38.a.

b.0.26  0.0430 (0.2170 to 0.3030)

c.

39.a. Use 944

b. Use 1631

40.a. = 255/1018 = 0.2505

b.1.96 = 0.0266

41.

Margin of Error = 1.96= 1.96(.0102) = .02

.16  1.96

.16  .02 (.14 to .18)

8 - 1