The Effect of Rising pH Levels on Marine Organisms in Tide Pools (It’s better to make it more clear that you are trying to show the verities of organisms)

Jessica Garcia and Jackie Olvera

Department of Biological Science

Saddleback College

Mission Viejo, CA 92692

Abstract

Marine organisms are being affected by the acidity of the ocean. The hypothesis tested was that there would be a less abundance of animals ( what kind of animal do you mean?) in an environment with a higher acidity. Two locations in Southern California were observed: Doheny State Beach in Dana Point and Treasure Island in Laguna Beach. The average pH at Doheny was 8.2 and the average pH at Treasure Island was 8.8. The variation in pH was too slight to see a difference in abundance of organisms. The area of the tide pools however did have an affect of abundance of marine organisms. At Treasure Island the tide pools were much deeper therefore they had significantly more organisms than that at Doheny. We concluded that to see if the acidity of the ocean does in fact have an effect on the abundance of organisms then a wider range of locations would be needed to be observed. More organisms were found in the larger tide pools which was expected so in order to have more accurate results we would need to visit tide pools that were much closer in size at all locations.

Introduction

Recent studies have shown that the rise in carbon dioxide levels in Earth’s atmosphere has had an effect on Ocean acidity. When carbon dioxide in the air hits the ocean water a chemical reaction occurs and turns that carbon dioxide into carbonic acid. An abundance of Carbon Dioxide changes the chemistry of the sea causing the life for most marine organisms to be in danger (Caldeira 2003).

The distribution of animals is correlated with the environmental factors such as dissolved oxygen (Jayalakshmy 2008), water temperature, depth, tidal amplitude, and turbidity (Cha 2004). Water temperature and acidity are directly related. As the water temperature increases the pH of the water becomes more acidic. The carbonic acid present in intertidal environments has a negative effect on its inhabitants. Most marine organism shells and skeletons are composed of the mineral calcium carbonate which is slowly dissolved by the carbonic acid (Caldeira 2003). Therefore the higher the water temperature and the more carbon dioxide polluted into the air leads to a more acidic ocean that can dissolve the shells and skeletons of marine organisms that play an important role in the food chain. For example smaller shelled organisms called pteropods are becoming rarer which can disrupt the food chain. Pteropods are a major food source for larger organisms such as fish and lobsters which are a major food source for humans (Caldeira 2003). Temperature cannot be controlled as easily as carbon dioxide abundance. The solution to this problem is to simply lower carbon dioxide emissions. If we continue to emit carbon dioxide into our atmosphere, then the continuation of dissolving shells and skeletons of marine organisms that are vital to the food chain will quickly be eliminated.

Marine organisms already have other dangers to worry about such as predators. For example in areas where starfish are more abundant sea urchins tend to emigrate from that environment (Schroeter 1983). Most marine organisms are capable of adapting to other environmental changes such as turbidity. Not only do shelled organisms suffer from the rise in pH of the ocean but coral reefs are also struggling to survive (Smith 1992). Scientists are considering ocean acidification as the other carbon problem with the first carbon problem being global warming. The first step to solving this problem is lowering the carbon dioxide emissions given off from automobiles. Doing this can also help the ozone layer and ultimately halt the ocean acidity problem.

Methods & Materials

Observations were determined during low tide inNovember of 2009 for the following two locations: Doheny State Beach in Dana Point, California and Treasure Island Beach in Laguna Beach, California. The locations were selected by their variations in pH levels ( How did you know about the pH of these locations) At each location three tide pools of various sizes (small, medium, and large) was observedcalculating the areafor each using a tape measure( What do you mean?).Having once determined thearea calculations of the tide pools, all organisms visible were counted within each pool.

Determining the quantity ofeach organism found inthe tidepools, allowed us toforesee any possible differences that could potentially be affected due to its levels of pH(Did you count all the organisms in tide pools) (Which part of tidepool did you choose for your experiment; nect to the ocean or far from ocean??). Among the organismsdiscovered were the Amthopleura xanthogrammica (sea anemone), Pisaster ochraceus (sea star), Mytilus californianus (California mussel), Pagurus samuelis (hermit crab), Tegula funebralis (snail), Octopus vulgaris (common octopus), and Aplysia californica (sea hare)( for what location are you talking about). The pHat both locations was determined by using a pH probe provided by Professor Steve Teh, Professor of Biological sciences at Saddleback College.

Results

In Table 1 (Figure 1), the frequency of organisms was graphed according to their location and size of tide pool they were located in. This indicates that organisms were more abundant at the tide pools located at Treasure Island, specifically in the large tide pool. (Data are not available)

In Table 2, the amount of each individual species observed was graphed along with the pH of the tide pool it was located in. The results indicated that there was a difference in the abundance of organisms located in tide pools with different acidity levels. The average pH of the tide pools located at Doheny State Beach was 8.2 and the average pH of the tide pools located at Treasure Island was 8.9. There was a difference in the abundance of organisms at both locations due to there varying pH levels. More organisms were found in the tide pools at Treasure Island than at Doheny State Beach (Results should be more scientific)( Did the data support your hypothesis).

Table 1

Table 1 caption: Bar graph displaying the mean frequency of marine organisms in tide pools at the locations of Doheny State Beach (Doho) and Treasure Island (T. Isle)( Data are not present).( What kind of test? Anova or t-test???

Table 2

Table 2 caption: Bar graph displaying the amount of total organisms of a specific species found in different levels of pH (Need more information on figure caption)(Data are not present).

Discussion

The acidity level in intertidal environments has been shown to have a negative effect on shelled organisms. Shells are beginning to slowly dissolve due to the acidity of the ocean which is created by the carbon dioxide emissions given off by various creations made by the Industrial Revolution. We tested this by measuring the pH of marine environments at two different locations in Southern California. Along with the pH readings we counted the amount of organisms present of different species. The species included were sea anemones, mussels, snails, hermit crabs, sea stars, sea hares, and octopus. The area of each tide pool was also conducted by measuring length, width, and depth.

Our results indicate that our hypothesis (what was your hypothesis?) was supported however the difference in the abundance of organisms found in the different pH environments was too slight to make an assertive decision with confidence. The area of each tide pool indicated that there was a more abundance of marine organisms living in larger environments. Further investigation is required in order to justify these results with confidence.

Literature Cited

Cha HR, Buddemeier RW, Fautin DG, Sandhei P. 15 November 2004. Distribution of sea anemones (Cnidaria, Actiniaria) in Korea analyzed by environmental clustering. Hydrobiologia. 430(Sp. Issue):497-502

Jayalakshmy KV, Saraswathy M, Nair M. 20 August 2008. Effect of water quality parameters on the distribution of Pleuromamma (Copepoda-Calanoida) species in the Indian Ocean: a statistical approach. Environmental Monitoring and Assessment. 155(1-4): 373-392

Schroeter SC, Dixon J, Kastendiek J. 1983. Effects of the starfish Patiria miniata

on the distribution of the sea-urchin Lytechinus anamesus in a southern Californian kelp forest. Oecologia. 56(2-3):141-147

Smith, S. V. and R. W. Buddemeier. 1992. Global change and coral-reef ecosystems. Annual Review of Ecology and Systematics 23:89-118

Caldeira K, Wickett ME. 2003. Anthropogenic carbon and ocean pH. Nature 425:365-365

Review Form

Department of Biological Sciences

Saddleback College, Mission Viejo, CA 92692

Author (s): Jessica Garcia and Jackie Olvera

Title: The Effect of Rising pH Levels on Marine Organisms in Tide Pools.

Summary

Summarize the paper succinctly and dispassionately. Do not criticize here, just show that you understood the paper.

Investigators are trying to count present organisms in different tide pool with different pH. The aim of this study is to show the variety of organisms in different location with different pH. Two location were chosen for this experiment; Doheny State Beach (Doho) and Treasure Island. After getting pH of tide pools, investigators count the available organisms in these areas. Organisms presents were the Amthopleura xanthogrammica (sea anemone), Pisaster ochraceus (sea star), Mytilus californianus (California mussel), Pagurus samuelis (hermit crab), Tegula funebralis (snail), Octopus vulgaris (common octopus), and Aplysia californica (sea hare). Result shown that the acidity level in intertidal environments have a negative effect on shelled organisms and that’s because of the shells are beginning to slowly dissolve due to the acidity of the ocean which is created by the carbon dioxide emissions given off by various creations made by the Industrial Revolution.

General Comments

Generally explain the paper’s strengths and weaknesses and whether they are serious, or important to our current state of knowledge.

The first question that came on my mind was that what your hypothesis is. Are you trying to compare these two locations together? Or you are trying to show the variety of organisms? Introduction gave enough information but methods are not completed and good enough. First of all you need to indicate how did you count the organisms and were they in the specific range? Did you measure pH of water? Is there any different in pH of ocean’s water and substrates on the location where you count the organisms? Result section needs data and needs to show that either your hypothesis was right or no? Graphs doesn’t have error bar and one does not have horizontal axis. I recommend working on your results and discussion. Discussion does not have any citations and needs to give more information about your results. Literature cited should be in alphabetic order.

Technical Criticism

Review technical issues, organization and clarity. Provide a table of typographical errors, grammatical errors, and minor textual problems. It's not the reviewer's job to copy Edit the paper, mark the manuscript.

This paper was a final version this paper was a rough draft


-Citations are not complete. You need to fix it. If you have more than one author you need to put “et al” on your citation.

-  In introduction section, you should indicate your hypothesis and aim of this experiment.

-  Methods and results need to be written in past sentence.

-  Method is not clear. Which part of tide pool investigators choose for this experiment?

-  It’s not clear that how they count organisms?

-  In the result section data are not available.

-  In result section, need to know that what kind of test they used.

-  Figure caption is not complete

-  There is no horizontal axis in figure 1

-  There is no mean bar

-  There is no data in figure captions.

-  Figure 2 captions are not completed; need more information about data and hypothesis. What kind of tests?

-  Data were not discussed in discussion.

-  Conclusion is not clear.

-  There is no citation in discussion area.

-  In references area, references are not in alphabetic order.

-  Did your result match your reference’s results?

And the rest were indicated on the parenthesis.