Chapter 11
11.1 Introduction
Review
Jordan, M. A., and Wilson, L., 1998. Microtubules and actin filaments: Dynamic targets for cancer chemotherapy. Curr. Opin. Cell Biol. v. 10 p. 123–130.
Kries, T., and Vale, R., eds., 1998. Guidebook to Cytoskeletal and Motor Proteins. Oxford University Press.
11.2 General functions of microtubules
Review
Gard, D. L., Cha, B. J., and Schroeder, M. M., 1995. Confocal immunofluorescence microscopy of microtubules, microtubule-associated proteins, and microtubule-organizing centers during amphibian oogenesis and early development. Curr. Top. Dev. Biol. v. 31 p. 383–431.
Howard, J., and Hyman, A. A., 2003. Dynamics and mechanics of the microtubule plus end. Nature v. 422 p. 753–758.
11.3 Microtubules are polar polymers of a- and b-tubulin
Review
Nogales, E., 2001. Structural insight into microtubule function. Annu. Rev. Biophys.
Biomol. Struct. v. 30 p. 397–420.
Research
Song, Y. H., and Mandelkow, E., 1995. The anatomy of flagellar microtubules: Polarity,
seam, junctions, and lattice. J. Cell Biol. v. 128 p. 81–94.
11.4 Purified tubulin subunits assemble into microtubules
Review
Desai, A., and Mitchison, T. J., 1997. Microtubule polymerization dynamics. Annu. Rev.
Cell Dev. Biol. v. 13 p. 83–117.
Job, D., Valiron, O., and Oakley, B., 2003. Microtubule nucleation. Curr. Opin. Cell Biol. v. 15 p. 111–117.
Mitchison, T. J., 1992. Compare and contrast actin filaments and microtubules. Mol. Biol. Cell v. 3 p. 1309–1315.
11.6 A cap of GTP-tubulin subunits regulates the transitions of dynamic instability
Review
Desai, A., and Mitchison, T. J., 1997. Microtubule polymerization dynamics. Annu. Rev.
Cell Dev. Biol. v. 13 p. 83–117.
Howard, J., and Hyman, A. A., 2003. Dynamics and mechanics of the microtubule plus end. Nature v. 422 p. 753–758.
Mitchison, T. J., 1992. Compare and contrast actin filaments and microtubules. Mol. Biol.
Cell v. 3 p. 1309–1315.
Research
Arnal, I., Karsenti, E., and Hyman, A. A., 2000. Structural transitions at microtubule ends correlate with their dynamic properties in Xenopus egg extracts. J. Cell Biol. v. 149 p. 767–774.
11.7 Cells use microtubule organizing centers to nucleate microtubule assembly
Review
Bornens, M., 2002. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. v. 14 p. 25–34.
Research
Dictenberg, J. B., Zimmerman, W., Sparks, C. A., Young, A., Vidair, C., Zheng, Y.,
Carrington, W., Fay, F. S., and Doxsey, S. J., 1998. Pericentrin and gamma-tubulin form a protein complex and are organized into a novel lattice at the centrosome. J. Cell Biol. v. 141 p. 163–174.
Moritz, M., Braunfeld, M. B., Sedat, J. W., Alberts, B., and Agard, D. A., 1995.
Microtubule nucleation by gamma-tubulin-containing rings in the centrosome. Nature v. 378 p. 638–640.
11.8 Microtubule dynamics in cells
Review
Bornens, M., 2002. Centrosome composition and microtubule anchoring mechanisms. Curr. Opin. Cell Biol. v. 14 p. 25–34.
Research
Komarova, Y. A., Vorobjev, I. A., and Borisy, G. G., 2002. Life cycle of MTs: Persistent growth in the cell interior, asymmetric transition frequencies and effects of the cell boundary. J. Cell Sci. v. 115 p. 3527–3539.
Rusan, N. M., Fagerstrom, C. J., Yvon, A. M., and Wadsworth, P., 2001. Cell cycle-dependent changes in microtubule dynamics in living cells expressing green fluorescent protein-alpha tubulin. Mol. Biol. Cell v. 12 p. 971–980.
11.9 Why do cells have dynamic microtubules?
Research
Holy, T. E., Dogterom, M., Yurke, B., and Leibler, S., 1997. Assembly and positioning of microtubule asters in microfabricated chambers. Proc. Natl. Acad. Sci. USA v. 94 p. 6228–6231.
11.10 Cells use several classes of proteins to regulate the stability of their microtubules
Review
Cassimeris, L., 1999. Accessory protein regulation of microtubule dynamics throughout the cell cycle. Curr. Opin. Cell Biol. v. 11 p. 134–141.
Lee, V. M., and Trojanowski, J. Q., 1999. Neurodegenerative tauopathies: human disease and transgenic mouse models. Neuron v. 24 p. 507–510.
Research
Desai, A., Verma, S., Mitchison, T. J., and Walczak, C. E., 1999. Kin I kinesins are microtubule-destabilizing enzymes. Cell v. 96 p. 69–78.
Gundersen, G. G., and Bretscher, A., 2003. Cell biology. Microtubule asymmetry. Science v. 300 p. 2040–2041.
Heald, R., 2000. A dynamic duo of microtubule modulators. Nat. Cell Biol. v. 2 p. E11–
E12.
McNally, F. J., 2001. Cytoskeleton: CLASPing the end to the edge. Curr. Biol. v. 11
p. R477–R480.
11.11 Introduction to microtubule-based motor proteins
Review
Gibbons, I. R., 1995. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskeleton v. 32 p. 136–144.
11.12 How motor proteins work
Review
Gibbons, I. R., 1995. Dynein family of motor proteins: present status and future questions. Cell Motil. Cytoskeleton v. 32 p. 136–144.
Vale, R. D., and Milligan, R. A., 2000. The way things move: Looking under the hood of molecular motor proteins. Science v. 288 p. 88–95.
Woehlke, G., and Schliwa, M., 2000. Walking on two heads: The many talents of kinesin.
Nat. Rev. Mol. Cell Biol. v. 1 p. 50–58.
Research
Burgess, S. A., Walker, M. L., Sakakibara, H., Knight, P. J., and Oiwa, K., 2003. Dynein structure and power stroke. Nature v. 421 p. 715–718.
Gross, S. P., Welte, M. A., Block, S. M., and Wieschaus, E. F., 2002. Coordination of opposite-polarity microtubule motors. J. Cell Biol. v. 156 p. 715–724.
Vallee, R. B. and Höök, P., 2003. Molecular motors: A magnificent machine. Nature v. 421 p. 701–702.
11.13 How cargoes are loaded onto the right motor
Review
Goldstein, L. S., 2001. Kinesin molecular motors: transport pathways, receptors, and human disease. Proc. Natl. Acad. Sci. USA v. 98 p. 6999–7003.
Holleran, E. A., Karki, S., and Holzbaur, E. L., 1998. The role of the dynactin complex in intracellular motility. Int. Rev. Cytol. v. 182 p. 69–109.
Kamal, A., and Goldstein, L. S., 2002. Principles of cargo attachment to cytoplasmic motor proteins. Curr. Opin. Cell Biol. v. 14 p. 63–68.
Vale, R. D., 2003. The molecular motor toolbox for intracellular transport. Cell v. 112 p.
467–480.
11.15 Interactions between microtubules and actin filaments
Review
Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., and Waterman-Storer, C. M., 2003. Conserved microtubule-actin interactions in cell movement and morphogenesis. Nat. Cell Biol. v. 5 p. 599–609.
Research
Bayless, K. J., and Davis, G. E., 2004. Microtubule depolymerization rapidly collapses capillary tube networks in vitro and angiogenic vessels in vivo through the small
GTPase Rho. J. Biol. Chem. v. 279 p. 11686–11695.
11.16 Cilia and flagella are motile structures
Review
Cole, D. G., 2003. The intraflagellar transport machinery of Chlamydomonas reinhardtii. Traffic v. 4 p. 435–442.
Ibañez-Tallon, I., Heintz, N., and Omran, H., 2003. To beat or not to beat: Roles of cilia in development and disease. Hum. Mol. Genet. v. 12 Spec No 1 p. R27–R35.
Pazour, G. J., and Witman, G. B., 2003. The vertebrate primary cilium is a sensory organelle. Curr. Opin. Cell Biol. v. 15 p. 105–110.
Porter, M. E., and Sale, W. S., 2000. The 9 + 2 axoneme anchors multiple inner arm dyneins and a network of kinases and phosphatases that control motility. J. Cell Biol. v. 151 p. F37–F42.
11.17 What’s next?
Review
Addinall, S. G., and Holland, B., 2002. The tubulin ancestor, FtsZ, draughtsman, designer and driving force for bacterial cytokinesis. J. Mol. Biol. v. 318 p. 219–236.
Hirokawa, N., and Takemura, R., 2003. Biochemical and molecular characterization of diseases linked to motor proteins. Trends Biochem. Sci. v. 28 p. 558–565.
Kirschner, M., and Mitchison, T., 1986. Beyond self-assembly: From microtubules to morphogenesis. Cell v. 45 p. 329–342.
Research
Mayer, T. U., Kapoor, T. M., Haggarty, S. J., King, R. W., Schreiber, S. L., and Mitchison, T. J., 1999. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science v. 286 p. 971–974.
Puls, I., Jonnakuty C., LaMonte, B. H., Holzbaur, E. L., Tokito, M., Mann, E., Floeter, M. K., Bidus, K., Drayna, D., Oh, S. J., Brown, R. H., Ludlow, C. L., and Fischbeck, K. H., 2003. Mutant dynactin in motor neuron disease. Nat. Genet. v. 33 p. 455–456.
Zhao, C., et al., 2001. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bbeta. Cell v. 105 p. 587–597.
11.21 Supplement: Tubulin synthesis and modification
Review
Cleveland, D. W., 1988. Autoregulated instability of tubulin mRNAs: A novel eukaryotic regulatory mechanism. Trends Biochem. Sci. v. 13 p. 339–343.
Ludueña, R. F., 1998. Multiple forms of tubulin: different gene products and covalent modifications. Int. Rev. Cytol. v. 178 p. 207–275.
Rosenbaum, J., 2000. Cytoskeleton: functions for tubulin modifications at last. Curr. Biol. v. 10 p. R801–R803.
Szymanski, D., 2002. Tubulin folding cofactors: half a dozen for a dimer. Curr. Biol. v. 12 p. R767–R769.
11.22 Supplement: Motility assays for microtubule-based motor proteins
Research
Vale, R. D., Reese, T. S., and Sheetz, M. P. 1985. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell v. 42 p. 39–50.