Mac 1140Practice for Test 3

Chapter 4

NON-CALCULATOR, Part A

1. Write in logarithmic form: 2. Write in exponential form: log

Evaluate:

3. log 104. 55. log44

Rewrite as a single logarithm. Simplify final answer if possible.

6. log x + - 3log(x+4)7. ln(x2 – 9) – ln (x - 3) + ln(x)

Rewrite as a sum or difference of logarithms.8. log 9. ln (3

10. Solve by addition.11. Solve by substitution.12. Solve.

x + 2y = 6 2x2 – y = 8 2x2 – y2 = 1

2x - y = -8 y = -7x – 4 x2 – 2y2 = -1

Graph: 13. x2 + y2 > 9 14a. x + 2y 14b. y > x2 - 4 y -x + y < 2

NONCALCULATOR, Part B:

Sketch the graph. Identify the asymptotes, the coordinates of the translated x-intercept, and domain and range for each graph. . (You may check the graph on your calculator)

1. y = log (x)2. y = -3 + log3(x)3. y = log (x – 3)4. y =-2 + log4(x-3)5. y = 4 + ln (x + 2)

Evaluate:

6. log 1007. log 10178. ln e439. log 2 810. log 2 (1/4)

11. log 4 212. log 50 + log 213. log 3 54 – log 3 214. 2log 7

15. eln 1716. 10log 17

Solve:

17. 23x-5 = 1618. 82x-5 = 16x19. 3x = 1920. log 3 (x + 2) = 4

21. log 2 (x) + log 2 (x + 6) = 422. log (x – 3) – log (x + 2) = log (5) 23. ln x = 7

24. ln (x – 2) = 7 25. eln 17 = 2x 26. 3x = 5(x – 1)27. logx64 = 3

28. 4x-3 = 829. 30. 25x + 1 = 6 31. ex = 25 32. 5x+4 = 52

Graph by filling in a table and graphing points in the table (see tables in answers; check graphs on calculator.).

33. f(x) = 3x34. f(x) = log3x (Replace f(x) with y & rewrite in exponential

form first. Then select y-values and evaluate

for x.)

35. Which of the following functions has an inverse?36. Determine the inverse of:

(Graph & use one-to-one, horizontal line test.) a. f(x) = 3x - 5

(Procedure is on page 138.)

a. f(x) = x2 – 3x - 4b. f(x) = b. f(x) =

A CALCULATOR MAY BE USED ON THE REMAINDER OF THE PROBLEMS.

SET THE MODE TO FOUR DECIMAL PLACES.

Evaluate1. ln 9242. log 924 3. log 7 924

Solve: 4. e3x - 2 = 105. -3x = 56. log (2x + 7) = -3

7. 3 – ln(x) = 2x – 58. ex = ln (x)

9. y = x210. y = x + 2

y = -x2 + 4 xy = 7

ANSWERS

Non-calculator portion, Part A:

1. log366 = 2. 2-3 = 3. 1 4. 8 5. 6. log 7. ln (x2 + 3x)

8. 2log(x) + log (y) - log(t) 9. ln 3 + xln2 10. (-2,4) 11. , (-4, 24) 12. (1, ), (-1,)

13. 14a. 14b.

Non-calculator portion, Part B:

1. x=0, (1, 0), D = (0,), R = (- or all reals 2. x=0, (1, -3), D =(0,), R = (- or all reals

3. x = 3, (4, 0), D = (3, ), R = all reals 4. x = 3, (4, -2), D = (4, ), R = all reals 5. x =-2, (-1, 4),

D = (-2, ,R= all reals 6) 2 7) 17 8) 43 9) 3 10) –2 11) 1/2 12) 2 13) 3 14) 1 15) 17 16) 17 17) 3 18) 15/2 19) log3 19 20) 79

21) 2 (throw away –8)

22) No solution (throw away-13/4) 23) e7 24) e7 + 2 25) 17/2 26) –ln5/(ln3 – ln5) or ln 5/(ln5 – ln3)

27)4 28) 29) 30) 31) x = ln 25 32) –4 + log552

33) x y 34) x y 34) exponential form 3y = x 35) b, because this function is

-1 1/3 1/3 -1 one-to-one; each y is paired

0 1 1 0 with exactly one x.

1 3 3 1

2 9 9 2 36a) f-1(x) =

36b) f-1(x) =

Calculator portion:

1) 6.82872) 2.9657 3) 3.5093 4).8283 5) no solution 6) –3.4995 7) 3.3896 8) no solution

9) (1.4142, 2) 10) (1.8284, 3.8284), (-3.8284, -1.8284)