Thiourea-Based Bifunctional Ionic Liquids As Highly Efficient Catalysts for the Cycloaddition

Thiourea-Based Bifunctional Ionic Liquids As Highly Efficient Catalysts for the Cycloaddition

Electronic Supplementary Information

Thiourea-Based Bifunctional Ionic Liquids as Highly Efficient Catalysts for the Cycloaddition of CO2 to Epoxides

Fei Xu, Weiguo Cheng, Xiaoqian Yao, Jian Sun, Wei Sun and Suojiang Zhang*

Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, PR China

NMR spectra of ionic liquid precusors and thiourea-based ionic liquids S2-S17

Figure S1. 1H and 13C NMR spectrum ofILP1.

Figure S2. 1H and 13CNMR spectrum ofILP2.

Figure S3. 1H and 13CNMR spectrum ofILP3.

Figure S4. 1H and 13CNMR spectrum ofILP4.

Figure S5. 1H and 13CNMR spectrum ofTBIL1.

Figure S6. 1H and 13CNMR spectrum ofTBIL2.

Figure S7. 1H and 13CNMR spectrum ofTBIL3.

Figure S8. 1H and 13CNMR spectrum ofTBIL4.

Figure S9. 13C NMR spectra of TBIL3 before and after absorption of CO2.

Figure S10. 1H NMR and 13C NMR spectra of1,3-dioxolan-2-one (2a).

Figure S11. 1H NMR and 13C NMR spectra of4-methyl-1,3-dioxolan-2-one (2b).

Figure S12. 1H NMR and 13C NMR spectra of4-chloromethyl-1,3-dioxolan-2-one (2c).

Figure S13. 1H NMR and 13C NMR spectra of4-butyl-1,3-dioxolan-2-one (2d).

Figure S14. 1H NMR and 13C NMR spectra of4,4-dimethyl-1,3-dioxolan-2-one (2e).

Figure S15. 1H NMR and 13C NMR spectra of4-phenyl-1,3-dioxolan-2-one (2f).

Figure S16. 1H NMR and 13C NMR spectra of4,5-tetramethylene-1,3-dioxolan-2-one (2g).

Absorption of CO2 S18

Figure S1.

ILP1: 1H NMR (DMSO, 600 MHz): δ (ppm) 9.51 (br, 1H), 7.81 (br, 1H), 7.64 (s, 1H), 7.39 (d, 2H), 7.32 (t, 2H), 7.19 (s, 1H), 7.11 (t, 1H), 6.89 (s, 1H), 4.00 (t, 2H), 3.45 (br, 2H), 2.02-1.98 (m, 2H). 13C NMR (DMSO, 150 MHz): δ (ppm) 180.99, 139.62, 137.82, 129.29, 128.99, 124.83, 123.71, 119.91, 44.33, 41.82, 30.65.

Figure S2.

ILP2: 1H NMR (DMSO, 600 MHz): δ (ppm) 9.40 (br, 1H), 7.68 (br, 1H), 7.64 (s, 1H), 7.23 (d, 2H), 7.18 (s, 1H), 7.14 (d, 2H), 6.89 (s, 1H), 3.99 (t, 2H), 3.43 (br, 2H), 2.27 (s, 3H), 2.01-1.96 (m, 2H).13C NMR (DMSO, 150 MHz): δ (ppm) 181.01, 137.89, 136.85, 134.15, 129.79, 128.96, 124.16, 119.90, 44.34, 41.84, 30.71, 21.02.

Figure S3.

ILP3: 1H NMR (DMSO, 600 MHz): δ (ppm) 9.30 (br, 1H), 7.63 (s, 1H),7.56 (br, 1H), 7.21-7.18 (m, 3H), 6.91-6.88 (m, 3H), 3.98 (t, 2H), 3.74 (s, 3H), 3.43 (br, 2H), 1.99-1.95 (m, 2H).13C NMR (DMSO, 150 MHz): δ (ppm) 181.27, 157.13, 137.81, 132.04, 128.96, 126.53, 119.90, 114.55, 55.81, 44.34, 41.89, 30.78.

Figure S4.

ILP4: 1H NMR (DMSO, 600 MHz): δ (ppm) 9.85 (br, 1H), 8.13 (br, 1H), 7.70-7.65 (m, 5H), 7.19 (s, 1H), 6.90 (s, 1H), 4.03 (t, 2H), 3.46 (br, 2H), 2.04-2.00 (m, 2H).13C NMR (DMSO, 150 MHz): δ (ppm) 181.01, 143.79, 137.75, 129.01, 126.25, 125.83, 124.04, 122.44, 119.89, 44.30, 41.79, 30.41.

Figure S5.

TBIL1: 1H NMR (DMSO, 600 MHz): δ (ppm) 11.21 (br, 1H), 9.55 (br, 1H), 9.49 (s, 1H), 7.95 (s, 1H), 7.91 (s, 1H), 7.53-7.51 (m, 2H), 7.46-7.40 (m, 3H), 4.37 (br, 2H), 3.70 (br, 2H), 3.25 (br, 2H), 2.31 (br, 2H), 1.22 (br, 3H).13C NMR (DMSO, 150 MHz): δ (ppm) 167.19, 136.60, 136.08, 129.89, 129.13, 127.95, 122.89, 122.71, 46.90, 44.80, 42.24, 27.16, 15.59.

Figure S6.

TBIL2: 1H NMR (DMSO, 600 MHz): δ (ppm) 11.09 (br, 1H), 9.45 (br, 2H), 7.93 (s, 1H), 7.89 (s, 1H), 7.31 (d, 4H), 4.35 (br, 2H), 3.66 (br, 2H), 3.22 (br, 2H), 2.35 (s, 3H), 2.28 (br, 2H), 1.21 (br, 3H).13C NMR (DMSO, 150 MHz): δ (ppm) 167.29, 138.79, 136.61, 133.49, 130.34, 127.81, 122.91, 122.71, 46.90, 44.80, 42.10, 27.01, 21.25, 15.58.

Figure S7.

TBIL3: 1H NMR (DMSO, 600 MHz): δ (ppm) 11.01 (br, 1H), 9.45 (s, 1H), 9.42 (br, 1H), 7.94 (s, 1H), 7.89 (s, 1H), 7.33 (d, 2H), 7.05 (d, 2H), 4.35 (br, 2H), 3.80 (s, 3H), 3.67 (br, 2H), 3.23 (br, 2H), 2.29 (br, 2H), 1.21 (t, 3H).13C NMR (DMSO, 150 MHz): δ (ppm) 167.61, 159.69, 136.62, 129.49, 128.52, 122.90, 122.70, 115.01, 56.14, 46.92, 44.80, 42.02, 26.94, 15.58.

Figure S8.

TBIL4: 1H NMR (DMSO, 600 MHz): δ (ppm) 9.57 (s, 1H), 7.92-7.86 (m, 4H), 7.60 (br, 2H), 4.34 (br, 2H), 3.63 (br, 2H), 3.22 (br, 2H), 2.27 (br, 2H), 1.25 (br, 3H).13C NMR (DMSO, 150 MHz): δ (ppm) 166.95, 140.49, 136.61, 128.51, 126.95, 125.33, 123.53, 122.91, 122.70, 46.90, 44.80, 42.60, 27.49, 15.53.

Figure S9.

Figure S10.

1H NMR (400 MHz, CDCl3), δ (ppm): 4.52 (t, J=10 Hz, 4H); 13C NMR (100.4 MHz, CDCl3), δ (ppm): 64.55, 156.36 (C=O).

Figure S11.

1H NMR (400 MHz, CDCl3), δ (ppm):1.49 (d, J=6.0 Hz, 3H), 3.98 (t, J=8.8 Hz, 1H), 4.51 (t, J=8.0 Hz, 1H), 4.79-4.86 (m, 1H); 13C NMR (100.4 MHz, CDCl3), δ (ppm): 19.15, 70.53, 73.48, 154.95 (C=O).

Figure S12.

1H NMR (400 MHz, CDCl3), δ (ppm): 3.69-3.82 (m, 2H), 4.39 (t, J=7.2 Hz, 1H), 4.58 (t, J=8.6 Hz, 1H), 4.95-5.01 (m, 1H); 13C NMR (100.4 MHz, CDCl3), δ (ppm): 43.84, 66.83, 74.29, 154.28 (C=O).

Figure S13.

1H NMR (400 MHz, CDCl3), δ (ppm): 0.84 (t, J= 7.1 Hz, 3H); 1.26-1.39 (m, 2H); 1.61-1.71 (m, 2H); 3.93-4.00 (m, 2H); 4.44 (d, J=8.3Hz, 2H); 4.61-4.68 (m, 1H);13C NMR (CDCl3, TMS, 100.4 MHz): 13.38, 21.85, 26.05, 33.09, 69.12, 76.89, 154.86 (C=O).

Figure S14.

1H NMR (400 MHz, DMSO), δ (ppm): 1.00 (s, 6H), 3.04 (s, 2H); 13C NMR (100.4 MHz, DMSO), δ (ppm): 25.82, 39.99, 75.22, 82.32, 154.55 (C=O).

Figure S15.

1H NMR (400 MHz, CDCl3), δ (ppm): 4.35 (t, J=8.4 Hz, 1H), 4.80 (t, J=8.4 Hz, 1H), 5.68 (t, 1H, J=8.0 Hz), 7.36-7.45 (m, 5H); 13C NMR (100.4 MHz, CDCl3), δ (ppm): 71.13, 77.94, 125.83, 129.20, 129.71, 135.77, 154.78 (C=O).

Figure S16.

1H NMR (400MHZ, CDCl3), δ (ppm): 1.38-1.48 (m, 2H), 1.58-1.68 (m, 2H), 1.89-1.92 (m, 4H), 4.67-4.71 (m, 2H); 13C NMR (100.4 MHz, CDCl3), δ (ppm): 19.03, 26.63, 75.78, 155.39 (C=O).

Absorption of CO2

The CO2 absorption test was carried out to observe the interaction between the TBIL3 and CO2. A certain amount ofvacuum-dried TBIL3 was loaded into a 25mL stainless-steel autoclave equipped with a magnetic stirring bar.The reactor was firstly purged with CO2 to evacuate the remainingair, then immersed in an oil bath to 50 °C and simultaneouslyCO2 was introduced into the autoclave to 1.5 MPa,then the reaction mixture was stirred until absorption equilibriumwas achieved. The amount of CO2 absorbed was determinedat regular intervals by an electronic balance with anaccuracy of ±0.1 mg.

S1