Materiaalkundige Micro-Analyse En Structuurbepaling: Questions

Materiaalkundige Micro-Analyse En Structuurbepaling: Questions

Materiaalkundige Micro-Analyse en Structuurbepaling:

Vragen voor examen 2015/2016studiejaar

(Reading guide)

General part

  1. General concept of the microstructure. Definition, General principles of microstructure characterization. Elastic and inelastic scattered signals. Structure –properties relationships. Microstructural scales.

Sources:

a)Lecture 1, slides 14 to 28;

b)Flewitt ”Physical methods for materials characterization-Second Edition”, Chapter 1.9-Microstructure (only)(file IP556_CH01.pdf);

  1. Resolution of the imaging systems. Describe the factors which influence the resolution of the imaging system. Rayleigh criterion.

Sources:

a)Lecture 1, slides 29 to 35;

b)Flewitt ”Physical methods for materials characterization-Second Edition”, Chapter 1.9-Microstructure (only)(file IP556_CH01.pdf);

  1. Interaction of the radiation with the matter. Penetration depth and material damage caused by photons, electrons and ions.

Sources:

a)Lecture 4, slides 1 to 30;,

b)Flewitt ”Physical methods for materials characterization-Second Edition”, Chapter 2.Parts 2.1, 2.2, and 2.3 Without 2.2.4. “Protons” (file IP556_CH02.pdf);I strongly recommend you to go through the rest of the Chapter 2 until Chapter 2.8

c)B.C.De Cooman “Materiaalkundige observatietechniken”Chapters 1.6.1.”Materiaalen en denciteiten” en chapter 1.6.2.”Basisformule van de microkarakterisatie”

  1. Sample preparation. General requirements. Specific steps in micro- and macro-sample preparation. Surface effects after grinding and polishing. Mechanical, chemical, electrolytic polishing. Etching, cleaning and keeping the samples.

Sources:

a) Lecture 2. Slides 1-26;

b)Practical classes notes and discussions;

Light optical microscopy

  1. Discuss the image formation, path of the beam/light and limitations (resolution, in-depth sharpness) of light optical microscopy. How does the image form during the observation in bright field, dark field and differential interference contrast?

Sources:

  1. Lecture 2, slides 27 to 56;,
  2. Flewitt ”Physical methods for materials characterization-Second Edition”, Chapter 5.Parts 5.1, and 5.4
  3. Practical classes report
  1. Light optical microscopy. Resolution. Numerical and angular aperture. Useful magnification of the microscope. Lens defects and methods to be corrected.

Sources:

  1. Lecture 2, slides 34 to 39,
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 5. Parts 5.2 and 5.3,
  3. Practical classes report
  1. Quantitative metallography (Stereology). Grain size determination (visual evaluation, Jefries, Salticov and linear interception method) Phase quantification. Automatic quantitative analysis.

Sources:

  1. Lecture 2, slides 57 to 72
  2. Practical classes report

X-ray diffraction

  1. Give the general theory about X-ray diffraction (Bragg low, reciprocal lattice, Ewald sphere).Generation of X-rays. Discuss also the penetration depth, absorption and sample preparation for XRD examination.

Sources:

  1. Lecture 9, slides 1 to 23,
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 4. Parts 4.31, 4.3.2, 4.3.4and 4.3.3 (4.3.3 only for information), (file IP556_CH04.pdf)
  3. Website:
  4. Practical classes report
  5. B.C.De Cooman “Materiaalkundige observatietechniken”; Chapter 3.1, 3.2(Interactie tussen X-stralen en vaste stof); 3.3.1, 3.3.2 (Productie van X-stralen). In file “Chapter 16.pdf”
  1. Application of X-ray diffraction. Methods for XRD measurements (Laue, Debay-Sherrer). Architecture of the X-ray diffractometer and focusing schemes. Determination of the type of the crystal lattice, phase analysis, determination of the lattice parameter.

Sources:

  1. Lecture 9, slides 24 to 46,
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 4. Parts 4.3.5, 4.3.6(file IP556_CH04.pdf)
  3. B.C.De Cooman “Materiaalkundige observatietechniken”; In file “Chapter 16.pdf” Chapter 3.1.1,until 3.1.2
  4. Practical classes report
  1. Application of X-ray diffraction. Quantitative phase analysis, internal stresses measurement.

Sources:

  1. Lecture 9, ”X-ray diffraction” slides 47 to 51,
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 4. Parts 4.3.8,(file IP556_CH04.pdf)
  3. B.C.De Cooman “Materiaalkundige observatietechniken” File:“Chapter 18.pdf”Chapters 3.6.1.”Meting van interne spanningen”
  4. Practical classes report
  1. Texture measurements: What is texture and how do we represent individual crystallographic orientations and textures.What is a pole-figure, inverse pole figure and an ODF?

Sources:

  1. Lecture 8 “Introduction to quantitative texture analysis”, slides 1 to 35,
  2. B.C.De Cooman “Materiaalkundige observatietechniken” File “Chapter 18.pdf” Chapter 3.6.2.”Textuuranalyse”
  3. V. Randle and O. Engler “Introduction to Texture Analysis-Macrotexture, Microtexture and Orientation Mapping” Chapters 2.1 to 2.6. page 13-36.-Recommended. (file Introduction to Texture Analysis.pdf)
  4. Practical classes report
  1. Practical aspects of texture measurementsby XRD (geometry of the measurement scheme). Sample preparation. Examples of rolling, textures, recrystallization textures and transformation textures in FCC and BCC crystal structures.

Sources:

  1. Lecture 9 ”X-ray diffraction” slides 52-60
  2. Lecture 8 ”Introduction to quantitative texture analysis”, slides 36 to 52
  3. V. Randle and O. Engler “Introduction to Texture Analysis-Macrotexture, Microtexture and Orientation Mapping” Chapter 3. Pages 41-54. and 61-88. –Recommended. (file Introduction to Texture Analysis.pdf)
  1. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 4. Parts 4.3.6, last part of the chapter, (file IP556_CH04.pdf)
  2. B.C.De Cooman “Materiaalkundige observatietechniken” File:Chapter 19.pdf”Chapter 3.6.2.3”Practische aspekten van de textuurmeting”
  3. Practical classes report

Electron microscopy (SEM and TEM)

  1. Scanning Electron Microscopy (SEM). Architecture of SEM. Types of filaments-advantages and disadvantages. Interaction of the primary beam with material-Efficiency of SE and BSE.

Sources:

  1. Lecture 6 ”Introduction to SEM” slides 1-32
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.1,6. 2 and 6.3. (file IP556_CH06.pdf)
  3. Bob Hafner ”Scanning Electron Microscopy Primer”–strictly recommended! File “sem_primer.pdf”
  4. B.C.De Cooman “Materiaalkundige observatietechniken” Files: “Chapter 8.pdf” “Chapter 9.pdf”, “Chapter 11.pdf”and Chapter 12.pdf Chapters2.3.1,(Elektronen bron), 2.3.2 (Elektronen optika), 2.3.3(Elektronen detektoren),2.5 (Elementen van de elektronen microscopen)
  5. Practical classes report
  1. EDX and WDX analysis in SEM Characteristic X-rays. Detectors-principle. Comparison between EDX and WDX spectroscopy.

Sources:

  1. Lecture 6 ”Introduction to SEM” slides 1-32
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.1,6. 2 and 6.3. (file IP556_CH06.pdf)
  3. Bob Hafner ”Energy Dispersive Spectroscopy on the SEM:A Primer! File “eds_on_sem_primer.pdf”Recommended!
  4. B.C.De Cooman “Materiaalkundige observatietechniken” Files: “Chapter 11.pdf”, “Chapter 12.pdf” Chapters 2.4. (X-stralen spectrometers) en Chapter 2.5.5.(Microanalize m.b.v. characteristieke X-stralen)
  5. Practical classes report
  1. Discuss the sample preparation techniques for TEM. Give schematic descriptions of different methods.

Sources:

  1. Lecture 11 ”Introduction to TEM” slides 21-42
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.4.4. (file IP556_CH06.pdf)
  3. Practical classes report
  1. Discuss the image formation and contrast formation in a TEM. What determines the resolution in a TEM and why?Explain the bright and dark field image formation in TEM and the way you can obtain an image.

Sources:

  1. Lecture 11 ”Introduction to TEM” slides 1-21
  2. Bob Hafner,” Introductory Transmission Electron Microscopy Primer” file “tem_primer.pdf”-Recommended
  3. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.4.1., 6.4.2, 6.4.3 and 6.4.5(file IP556_CH06.pdf)
  4. Practical classes report
  1. What are the functions of the objective aperture in TEM and where it is positioned? What does change in the image when you insert and objective aperture. What is SAD and how are the SAD images analyzed for cubic materials?

Sources:

  1. Lecture 11 ”Introduction to TEM” slides 1-21
  2. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.4.1., 6.4.2, 6.4.3 and 6.4.5(file IP556_CH06.pdf)
  3. Bob Hafner,” Introductory Transmission Electron Microscopy Primer” file “tem_primer.pdf”-Recommended
  4. Practical classes report
  1. EBSD. Explain the basic operational principles of the EBSD method. Formation of Kikuchi pattern. Band detection. Hough transform. Pattern indexation.

Sources:

  1. Lecture 7 ”EBSD” slides 1-26
  2. V. Randle and O. Engler “Introduction to Texture Analysis-Macrotexture, Microtexture and Orientation Mapping” Chapter6 pages 127-151 and 157-176. –Recommended. (file Introduction to Texture Analysis.pdf)
  3. Flewitt:”Physical methods for materials characterization-Second Edition”, Chapter 6. Parts 6.4.1., 6.4.2, 6.4.3 and 6.4.5(file IP556_CH06.pdf)
  4. Bob Hafner,” Introductory Transmission Electron Microscopy Primer” file “tem_primer.pdf”-Recommended
  5. Practical classes report
  1. Evolution of electron back-scatter diffraction (EBSD. Orientation Image Analysis. Special resolution and angular resolution of the EBSD. What is IQ, (BC) CI (MAD)? Experiment design philosophy. What kind of information can be obtained from an EBSD measurement? (Examples). Sample preparation for the EBSD measurement. Compare the EBSD with the XRD method for texture characterization.

Sources:

  1. Lecture 7 ”EBSD” slides 1-26
  2. V. Randle and O. Engler “Introduction to Texture Analysis-Macrotexture, Microtexture and Orientation Mapping” Chapter 7; pages 157-176. –Recommended (file Introduction to Texture Analysis.pdf)
  3. Practical classes report
  1. Give an overview of the special techniques that are used to do a3D microstructure characterization. Explain details on 3D-EBSD with focused Ion beam and 3D-Xray diffraction.

Sources:

  1. Lecture 12 ”3D microstructure characterization by means of combined FIB-EBSD method” slides 1-26
  1. What observation techniques stay behind the abbreviations AFM and APM? Discuss the operational principle, requirements for the sample preparation and the application field.

Sources:

  1. Lecture 13 ”Microstructure characterization by means of combined Atomic Force Microscopy, Atom Probe Microscopy and Laser Confocal Microscopy”

Prof. Dr. Ir. Roumen Petrov