Dr. M. R.Wilson publications
Polymers and Dendrimers
[1] Wilson M. R., Ilnytskyi J. M., Stimson L. M., Computer simulations of a liquid crystalline dendrimer in liquid crystalline solvents. J. Chem. Phys., 2003, 119, 3509-3515.
[2] Wilson M. R., Miller A. F., Cook M. J., Richards R. W.. Monte Carlo simulations of an amphiphilic polymer at a hydrophobic/hydrophilic interface. Molec. Phys., 2003, 101, 1131-1138.
Helical twisting powers
[3] Neal M. P. , Solymosi M., Wilson M. R., Earl D. J. Helical twisting power and scaled chiral indices. J. Chem. Phys., 2003, 119, 3567-3573.
[4] Solymosi M., Low R. J., Grayson M., Neal M. P., Wilson M. R., Earl D. J. Scaled chiral indices for ferroelectric liquid crystals. Ferroelectrics, 2002, 277, 483-490.
[5] Wilson M. R., Earl D. J. Calculating the helical twisting power of chiral dopants., J. Mat. Chem., 2001, 11, 2672-2677.
Rotational viscosities
[6] Cuetos A., Ilnytskyi J. M., Wilson M. R.. Rotational viscosities of Gay-Berne mesogens. Molec. Phys., 2002, 100, 3839-3845.
[7] Cheung D. L., Clark S. J, Wilson M. R.. Calculation of the rotational viscosity of a nematic liquid crystal Chem. Phys. Lett., 2002, 356, 140-146.
Force fields and Atomistic Simulation of liquid crystals
[8] Cheung D. L., Clark S. J., Wilson M. R.. Parametrization and validation of a force field for liquid-crystal forming molecules. Phys. Rev. E, 2002, 65, art. no. 051709, 1-10.
[9] Cook M. J., Wilson M. R.. The first thousand molecule simulation of a mesogen at the fully atomistic level. Molec. Cryst. Liq. Cryst., 2001, 363, 181-193.
[10] Cook M. J., Wilson M. R.. A molecular dynamics simulation study of dipole correlation
in the isotropic phase of the mesogens me5NF and GGP5Cl., Molec. Cryst. Liq. Cryst.,2001, 357, 127-147.
[11] Cook M. J., Wilson M. R.. Development of an all-atom force field for the simulation of liquid crystal molecules in condensed phases (LCFF)., Molec. Cryst. Liq. Cryst., 2001, 357, 149-165 .
Parallel program development
[12] Ilnytskyi J. M., Wilson M. R.. A domain decomposition molecular dynamics program for the simulation of flexible molecules of spherically-symmetrical and nonspherical sites. II. Extension to NVT and NPT ensembles. Comput. Phys. Comm., 2002, 148, 43-58.
[13] Ilnytskyi J, Wilson M. R.. A domain decomposition molecular dynamics program for the simulation of flexible molecules with an arbitrary topology of Lennard-Jones and/or Gay-Berne sites. Comput. Phys. Comm., 2001, 134, 23-32.
Computer simulations of liquid crystals: simplified models
[14] Earl D. J.; Ilnytskyi J.; Wilson M. R.. Computer simulations of soft repulsive spherocylinders. Molec. Phys., 2001, 99, 1719-1726.
[15] Ilnytskyi J, Wilson M. R.. Molecular models in computer simulation of liquid crystals. J. Molec. Liq., 2001, 92, 21-28.
Prof. J. M. Hutson Publications
[1] J. M. M. Howson and J. M. Hutson, "Morphing the He-OCS intermolecular
potential", J. Chem. Phys. 115, 5059-5065 (2001).
[2] A. Carrington, D. I. Gammie, J. C. Page, A. M. Shaw and J. M. Hutson,
"Microwave electronic spectrum of the Ne...Ne+ long-range complex: the
interaction potential", J. Chem. Phys. 116, 3662-3669 (2002).
[3] P. Soldán and J. M. Hutson, "Near-dissociation states and coupled
potential curves for the HeN+ complex", J. Chem. Phys. 117, 3109-3119
(2002).
[4] M. Xu, Z. Bacic and J. M. Hutson, "Clusters containing open-shell
molecules: II. Equilibrium structures of ArnOH Van der Waals clusters (2P,
n=1 to 15)", J. Chem. Phys. 117, 4777-4786 (2002).
[5] M. Xu, Z. Bacic and J. M. Hutson, "Clusters containing open-shell
molecules: III. Quantum five-dimensional / two-surface bound-state
calculations on ArnOH Van der Waals clusters (2P, n=4 to 12)", J. Chem.
Phys. 117, 4787-4799 (2002).
[6] P. Soldán, M. T. Cvitas, J. M. Hutson, P. Honvault and J.-M. Launay,
"Quantum dynamics of ultracold Na + Na2 collisions", Phys. Rev. Lett. 89,
153201 (2002).
[7] P. Soldán, M. T. Cvitas and J. M. Hutson, "Three-body non-additive
forces between spin-polarized alkali atoms", Phys. Rev. A 67, 054702 (2003)
[8] I. N. Kozin, M. M. Law, J. M. Hutson and J. Tennyson, "Calculating the
energy levels of isomerizing tetraatomic molecules. I. The rovibrational
bound states of Ar2HF", J. Chem. Phys. 118, 4896-4904 (2003).
[9] M. Meuwly and J. M. Hutson, "Potential energy surfaces and bound states
for the open-shell Van der Waals cluster Br-HF", J. Chem. Phys., in press
for 8 November 2003.
[10] P. Soldán and J. M. Hutson, "On the interaction of NH molecules with
rubidium atoms: implications for sympathetic cooling and the formation of
extremely polar molecules", Phys. Rev. Lett., submitted July 2003.
[11] M. T. Cvitas, P. Soldán and J. M. Hutson, "Conical intersections in the
potential energy surface for interaction of three spin-aligned lithium
atoms", in preparation.
Dr S.J. Clark publications
[1] S. J. Clark and H. M. Al-Allak, “The valence-band offset of the lattice matched -FeSi2(100)/Si(001) heterostructure”, Phys. Rev. B63 033311 (2001).
[2] L. Cronin, S. J. Clark, S. Parsons, T. Nakamura and N. Robertson, “Unique structural topologies involving metal-metal and metal-sulphur interactions”, J. Chem. Soc. Dalton, 8 1347 (2001).
[3] E. M. King, S. J. Clark, C. F. Verdozzi and G. J. Ackland “Interaction between metallic p-orbitals and the -orbitals of organic molecules”, J. Phys. Chem. B105, 641 (2001).
[4] D. R. Allan, S. J. Clark, S. Parsons and M. Ruf “A high pressure study of propionic acid”, J. Phys. Condens. Mat. 12 L613 (2001).
[5] D. Bloor, Y. Kagawa, M. Szablewski, M, Ravi, S. J. Clark, G. H. Cross, L. O. Palsson, A. Beeby, C. Parmer and G. Rumbles “Matrix dependence of light emission from TCNQ adducts”, J. Materials Chem. 11 3053 (2001).
[6] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Hasnip, S. J. Clark and M. C. Payne “First-principles simulation: ideas, illustrations and the Castep code”, J. Phys. Condens. Matter 14 2717 (2002).
[7] D. R. Allan, S. J. Clark, A. Dawson, P. A. McGergor and S. Parsons “Comparison of the high-pressure and low-temperature structures of sulfuric acid”, J. Chem. Soc. Dalton 8 1867 (2002).
[8] A. Hofmann, S. J. Clark, M. Oppel and I Hahndorf”, “Hydrogen adsorption on the tetragonal ZrO2 (101) surface: a theoretical study of an important catalytic reactant” Phy. Chem. and Chem. Phys. 4 3500 (2002).
[9] J. C. Collings, K. P. Roscoe, E. G. Robins, A. S. Batsanov, J. A. K. Howard, S. J. Clark and T. B. Marder, “Arene-perfluoroarene interactions in crystal engineering 8: structures of 1:1 complexes of hexafluorobenzene with fused-ring polyaromatic hydrocarbons”, New J. of Chemistry26, 1740 (2002).
[10] D. R. Allan, S. J. Clark, A, Dawson, P. A. McGregor and S. Parsons, “Pressure-induced polymorphism in phenol”, Acta Cryst. B58 1018 (2002).
Also see publications [7] and [8] listed under Wilson publications and publications [6], [7] and [8] listed under Tozer publications.
Dr. D. J. Tozer Publications
[1] P. J. Wilson, T. J. Bradley, and D. J. Tozer . Hybrid exchange-correlation functionals determined from thermochemical data and ab initio potentials.
J. Chem. Phys. 115 9233-9242 (2001)
[2] P. J. Wilson and D. J. Tozer. A Kohn-Sham study of the oxirene-ketene potential energy surface.
Chem. Phys. Lett. 352 540-544 (2002)
[3] D. M. Grant, P. J. Wilson, D. J. Tozer, and S. C. Althorpe. H + H2 quantum dynamics using potential energy surfaces from density functional theory
Chem. Phys. Lett. 375 162-166 (2003)
[4] G. Menconi and D. J. Tozer Diatomic bond lengths and vibrational frequencies: Assessment of recently developed exchange-correlation functionals
Chem. Phys. Lett. 360 38-46 (2002)
[5] G. Menconi and D. J. Tozer. Structures and harmonic frequencies of sulfur-containing molecules: Assessment of the ¼ exchange-correlation functional
Phys. Chem. Chem. Phys. 5 2938-2941 (2003)
[6] P. P. Rushton, S. J. Clark, and D. J. Tozer. Density functional theory calculations of semiconductor properties using a semi-empirical exchange-correlation functional
Phys. Rev. B 63 115206 (2001)
[7] P. P. Rushton, D. J. Tozer, and S. J. Clark. Description of exchange and correlation in the strongly inhomogeneous electron gas using a nonlocal density functional
Phys. Rev. B 65 193196 (2002)
[8] P. P. Rushton, D. J. Tozer, and S. J. Clark Non-local density functional description of exchange and correlation in bulk silicon.
Phys. Rev. B 65 235203 (2002)
[9] P. J. Wilson and D. J. Tozer. NMR shielding constants from ab initio and Kohn-Sham electron densities
Chem. Phys. Lett. 337 341-348 (2001)
[10]. P. J. Wilson and D. J. Tozer. Varying the fraction of orbital exchange in density functional theory: Influence on nuclear magnetic resonance shielding constants
J. Chem. Phys. 116 10139-10147 (2002)
[11] P. J. Wilson and D. J. Tozer. Magnetisabilities in density functional theory
J. Mol. Struct. 602-603 191-197 (2002)
[12] T. W. Keal and D. J. Tozer. The exchange-correlation potential in Kohn-Sham nuclear magnetic resonance shielding calculations
J. Chem. Phys. 119 3015 (2003)
[13] M. J. Allen, T. W. Keal, and D. J. Tozer. Improved NMR chemical shifts in density functional theory
Chem. Phys. Lett. 380 70-77 (2003)
Prof. R. K. Harris Publications
[1] A Portieri, R.K. Harris, R.A. Fletton, R.W. Lancaster & T.L. Threlfall, Magn. Reson. Chem., in press.
[2] R.K. Harris, P.Y. Ghi, R.B. Hammond, C.-Y. Ma & K.J. Roberts, Chem. Comm., in press.
[3] S.E. Dobbins, P.Y. Ghi, R.K. Harris, F. Mauri, C.J. Pickard & J.R. Yates, in preparation.
[4.] H.E. Birkett, J.C. Cherryman, A.M. Chippendale, P. Hazendonk & R.K. Harris. Molecular modelling studies of side-chain rotation in substituted triazine rings. J. Mol. Struct., 602 (2002) 59.
[5] H.E. Birkett, J.C. Cherryman, A.M. Chippendale, J.S.O. Evans, R.K. Harris, M. James, I.J. King & G.J. McPherson. Structural investigations of three triazines: solution-state NMR studies of internal rotation and structural information from solid-state NMR, plus a full structure determination from powder x-ray diffraction in one case. Magn. Reson. Chem. 41 (2003) 324.
[6] P. Avalle, R.K. Harris, P.B. Karadakov & P.J. Wilson. Calculations of magnetic shielding for the tin nucleus in a series of tetra-organotin compounds using density functional theory. Phys. Chem. Chem. Phys. 4 (2002) 5925.
[7] P. Avalle, R.K. Harris & R.D. Fischer. DFT calculations of Sn-119 chemical shifts for organometallic cyanides. Phys. Chem. Chem. Phys. 4 (2002) 3558.
[8] P. Avalle, R.K. Harris, H. Hanika-Heidl & R.D. Fischer, in preparation.
Dr. S. J. Cooper Publications
[1] Cooper,S. J.; Coogan, M.; Everall, N.; Priestnall,I. A polarised mu-FTIR study on a model system for nylon 6 6: implications for the nylon Brill structure. Polymer 2001, 42, 10119-10132.
[2] S. J. Cooper,E. D. T. Atkins, M. J. Hill. Structures for monodisperse nylon 6 oligomers. Two different intersheet shears for 5- and 9-amide oligomer crystals Polymer2002, 43, 891-898.
[3] Smith, M. J.; Cooper S. J. to be submitted to Macromolecules.
Professor J.A.K. Howard – Publications
[1] J. W. Yao, R. C. B. Copley, J. A. K. Howard, F. H. Allen and W. D. S. Motherwell, General Method for the Description, Visualisation and Comparison of Metal Coordination Spheres: Geometrical Preferences, Deformations and Interconversion Pathways, Acta. Cryst., 2001, B57,251-260
[2] J. C. Cole, J. W. Yao, G. P. Shields, W. D. S. Motherwell, F. H. Allen and J. A. K. Howard, Automatic Detection of Molecular Symmetry in the Cambridge Structural Database, Acta Cryst., 2001, B57,88-94
[3] C. Bilton, J. A. K. Howard, N. N. L. Madhavi, G. R. Desiraju, A. H. Allen and C. C. Wilson, Crystal engineering in the gem-alkynol family. The key role of water in the structure of 2,3,5,6-tetrabromo-trans-1,4-diethynyl-cyclohexa-2,5,-diene-1,4-diol dihydrate determined by X-ray and neutron diffraction at 150 K, Acta Cryst., 2001, B57,560-566
[4] D. M. Allen, A. S. Batsanov, G. M. Brooke and S. J. Lockett, Pyrolysis reactions of 4-phenyl-2,3,5,6-tetrafluorophenyl prop-2-enyl ether and 4-trifluoromethyl-2,3,5,6-tetrafluorophenyl prop-2-enyl ether: Remarkable rearrangement reactions of intramolecular Diels-Alder products. Mechanistic implications of a new thermal retro-Diels-Alder reaction to cyclohexa-2,4-dienylmethyl fluoroketenes and recyclisations by π4s + π2s and/or π2s + π2a routes., J. Fluorine Chem., 2001, 108,57-67
[5] R. B. Coapes, F. E. S. Souza, M. A. Fox, A. S. Batsanov, A. E. Goeta, D. S. Yufit, M. A. Leech, J. A. K. Howard, A. J. Scott, W. Clegg and T. B. Marder, Phosphine promoted substituted redistribution reactions of B-chlorocatechol borane: molecular structures of ClBcat, and L.ClBcat (cat = 1,2-O2C6H4; L = PMe3, PEt3, PBut3, PCy3, NEt3), J. Chem. Soc. Dalton Trans., 2001, 1201-1209
[6] J. W. Yao, J. C. Cole, E. Pidcock, F. H. Allen, H. J.A.K and W. D. S. Motherwell, CSDSymmetry: The definitive database of point-group and space-group symmetry relationships in small-molecule crystal structures, Acta. Cryst., 2002, B58,640-646
[7] H.-B. Burgi, S. C. Capelli, A. E. Goeta, J. A. K. Howard, M. A. Spackman and D. S. Yufit, Electron Distribution and Molecular Motion in Crystalline Benzene. An Accurate Experiment Study Combining CCD X-ray Data on C6H6 with Multi-temperature Neutron Diffraction Results on C6D6, Chem. Eur. J., 2002, 8,3512-3521
[8] F. H. Allen, R. Mondal and J. A. K. Howard, Mapping the geometry of metal 3-coordination using crystal structure data: Reaction pathway for ligand addition to linear Hg(ii) species., Helv. Chim. Acta, 2003, 86,1129-1139
[9] R. L. Cordiner, D. Corcoran, D. S. Yufit, A. E. Goeta and J. A. K. Howard, Cyanoacetylenes and cyanoacetylides: versatile ligands in organometallic chemistry, Dalton Trans, 2003, 3541-3549
Dr. M. Fox publications
[1] M. A. Fox, A.K. Hughes, A.L. Johnson and M.A.J. Paterson, J. Chem. Soc.,
Dalton Trans., 2002, 2009-2019. Do the discrete dianions C2B9H112- exist?
Characterisation of alkali metal salts of the 11-vertex nido dicarboranes,
C2B9H112-, in solution.
[2] M. A. Fox, A.E. Goeta, A.K. Hughes and A.L. Johnson, J. Chem. Soc., Dalton
Trans., 2002, 2132-2141. Crystal and molecular structures of the
nido-carborane anions, 7,9- and 2,9-C2B9H12-.
[3] M. A. Fox, A. K. Hughes and J. M. Malget, J. Chem. Soc., Dalton Trans.,
2002, 3505-3517. Cage-closing reactions of the nido-carborane anion
7,9-C2B9H12- and derivatives; formation of neutral 11-vertex carboranes by
acidification.
[4] E.S. Alekseyeva, A.S. Batsanov, L.A. Boyd, M. A. Fox, T.G. Hibbert, J.A.K.
Howard, J.A.H. MacBride, A. Mackinnon and K. Wade, Dalton Trans., 2003,
475-482. Intra- and inter-molecular carboranyl C-HN hydrogen bonds in
pyridyl-containing ortho-carboranes.
[5[ E.S. Alekseyeva, M. A. Fox, J.A.K. Howard, J.A.H. MacBride and K. Wade,
Appl. Organometal. Chem., 2003, 17, 499-508. Synthesis and crystal
structure of an assembly of three ortho-carborane cages linked via
para-phenylene units. Effect of aryl orientation on cage C-C bond lengths
in C-aryl-ortho-carboranes.
[6] M. A. Fox, J. A. K. Howard, J. A. H. MacBride, A. Mackinnon and K. Wade,
J. Organomet. Chem., 2003, 680, 155-164. Big Macrocyclic Assemblies of
Carboranes (Big MACs): Synthesis and Crystal Structure of a Macrocyclic
Assembly of four Carboranes containing alternate ortho- and meta-Carborane
Icosahedra linked by para-phenylene units.