Table S1. Amplification of nosZ from isolates using primers nosZ-II-F and nosZ-II-R

Organisma / Clade / Ampliconb / Annealing temperaturec
(°C)
nosZ organisms:
Anaeromyxobacter dehalogens DSM-218751 / II / -
Candidatus Accumulibacter phosphatisUW-13 / II / +++ / 48-62
Desulfitobacterium hafnienseDSM-106642 / II / +, 500 / 48-51
Dyadobacter fermentansDSM-180531 / II / +++ / 48-62
Gemmatimonas aurantiacaDSM-145861 / II / +++ / 48-63
Geobacillus thermodenitrificansDSM-4651 / II / +, 500 / 48-54
Magnetospirillum magneticumAMB-11 / II / + / 51-62
Opitutus terrae DMS-112462 / II / + / 54-57,5
Pyrobaculum calidifontis JCM-115483 / II / 150, 300 / 48-58
Salinibacter ruberDSM-138552 / II / ++,650 / 48-62
Sulfurimonas denitrificansDSM-12512 / II / +, 150, 350, 500 / 48-53
Achromobacter cycloclastesATCC-219211 / I / 150, 250, 500 / 48-60
Alcaligenes faecalisATCC-87501 / I / 900 / 48-62
Paracoccus denitrificansATCC-193671 / I / -
Pseudomonas flourescensATCC 335121 / I / -
Pseudomonas stutzeriATCC-144052 / I / 400 / 48
Psychromonas ingrahamiiDSM-176642 / I / ++ 300, 800 / 49-54
Bradyrhizobium japonicumUSDA110A1 / I / -
Burkholderia thailandensisDSM-132762 / I / 150 / 48-57
Cupriavidus necatorATCC 176991 / I
Cupriavidus metalliduransATCC 431232 / I / -
Haloarcula marismortui ATCC-430493 / I / 900 / 48-51
Non-nosZ organisms:
Lactobacillus gasseri KA315-A33 / None / -
Arthrobacter chlorophenolicus A63 / None / -

aExtraction technique of genomic DNA is indicated as follows: (1) DNeasy kit (Qiagen), (2) extracted using SDS protocol, or (3) received extracted DNA from source.

bIntensity of nosZ PCR product is indicated as follows: (+) low intensity, (++) medium intensity, (+++) high intensity, or (-) for no band. Numbers indicate approximate sizes of observed non-sepcific amplification products.

cTemperature range in which PCR products where observed.

Table S2. Environmental samples for clade II nosZ clone libraries
Clone library / Number of Sequences / Sample / Amplicona / Site Description/Reference
Arable soil / 90 / Brunnby / ++ / Brunnby gård, Västerås, Sweden (Throbäcket al., 2004)
Logården 2 / ++ / Logården research farm, Sweden(Enwallet al., 2010)
Logården 50 / ++ / Logården research farm, Sweden(Enwallet al., 2010)
Alunda / ++ / Uppsala, Sweden (Throbäcket al., 2004)
Ulleråker / ++ / Uppsala, Sweden (Philippot et al., 2011)
Manureamended arable soil / 55 / Ram J / ++ / Ultuna, Uppsala, Sweden (Enwallet al., 2007)
PAH contaminated soil / 29 / Fin / ++ / Oil-contaminated site, Finland (Petric et al., 2011)
Rice paddy sediment / 22 / RMgM 108 / ++ / Rice-mungbean-maize paddy rotation, Vietnam (Xuan et al., 2011)
RRR 14 / + / Continuous rice paddy, TienGang, Vietnam (Xuan et al., 2011)
RRR 29 / + / Continuous rice paddy, TienGang, Vietnam (Xuan et al., 2011)
RMgM 98 / ++ / Rice-mungbean-maize paddy rotation, Vietnam (Xuan et al., 2011)
Activated sludge/ / 42 / Eskilstuna 1 / ++ / Eskilstuna, Sweden (Rodriguez-Caballero et al., 2012)
wastewater treatment plant / Eskilstuna 2 / ++ / Eskilstuna, Sweden (Rodriguez-Caballero et al., 2012)
Henriksdal B2 / +++ / Henriksdal, Stockholm, Sweden (Hallin et al., 2005)
Henriksdal B3 / +++ / Henriksdal, Stockholm, Sweden (Hallin et al., 2005)
Västerås 1 / ++ / Västerås, Sweden (Rodriguez-Caballero et al., 2012)
Västerås 2 / ++ / Västerås, Sweden (Rodriguez-Caballero et al., 2012)
Wetland / 93 / Fyris / ++ / Fyris fen, Uppsala, Sweden (unpublished)
Lake sediment / 72 / Erken littoral / ++ / Littoral sediment, lake Erken, Sweden (unpublished)
Erken limnetic / ++ / Limnetic sediment, lake Erken, Sweden (unpublished)

aIntensity of nosZ PCR product (approximately 700 bp) is indicated as follows: (+) low intensity, (++) medium intensity, (+++) high intensity, or (-) for no band.

.

Table S3.Abundance of 16S rRNA, nosZ clade I, and nosZ clade II genes in environmental samples from different habitat types based on quantitative PCR and expressed as number of gene copies per ng DNA
Habitat type / Site name, Countryc / Reference / Replicates / 16S / nosZ clade I / nosZclade II
Arable Soil / Alunda, Sweden1 / (Throbäcket al., 2004) / 3 / 7.06 ± 0.42 × 105 / 8.72 ± 0.78 × 103 / 1.94 ± 0.11 × 104
Brunnby, Sweden1 / (Throbäcket al., 2004) / 3 / 4.96 ± 2.96 × 105 / 4.79 ± 2.95 × 103 / 6.54 ± 3.53 × 103
Bor, France2 / (Petric et al., 2011) / 3 / 4.47 ± 0.57 × 105 / 2.83 ± 0.49 × 103 / 2.11 ± 0.33 × 104
Mar, France2 / (Petric et al., 2011) / 3 / 5.69 ± 1.10 × 104 / 1.95 ± 0.70 × 102 / NDa
Lanna, Sweden1 / (unpublished) / 3 / 5.87 ± 0.82 × 105 / 6.89 ± 1.44 × 103 / 1.02 ± 0.16 × 104
Logården2, Sweden1 / (Enwallet al., 2010) / 3 / 4.06 ± 3.56 × 105 / 4.90 ± 4.85 × 103 / 5.87 ± 4.83 × 103
Logården50, Sweden1 / (Enwallet al., 2010) / 3 / 2.88 ± 1.34 × 105 / 2.92 ± 1.28 × 103 / 4.29 ± 1.60 × 103
EpoA, France2 / (Cheneby et al., 2010) / 3 / 1.05 ± 0.30 × 106 / 8.87 ± 2.72 × 103 / 2.63 ± 0.68 × 104
Ulleråker, France2 / (Petric et al., 2011)) / 3 / 1.03 ± 0.10 × 106 / 1.16 ± 1.04 × 104 / 1.34 ± 0.17 × 104
Bou, France2 / (Philippot et al., 2002) / 3 / 4.79 ± 0.13 × 104 / 3.93 ± 0.34 × 102 / 1.24 ± 0.17 × 103
Forest soil / Ger, Germany2 / (Petric et al., 2011) / 3 / 1.56 ± 1.42 × 106 / 8.93 ± 6.12 × 103 / 1.32 ± 1.36 × 104
Alpine soil / Himalaya 5200 m 56, Nepal / (Stres et al., 2010) / 3 / 9.52 ± 7.16  104 / 5.55 ± 3.89 × 102 / 3.33 ± 2.57 × 102
Himalaya 6000 m 66, Nepal / (Stres et al., 2010) / 3 / 2.76 ± 0.39 × 105 / 2.27 ± 0.70 × 103 / 5.74 ± 1.64 × 102
Biotechnosol / Biotechnosoil, France2 / (unpublished) / 3 / 1.01 ± 0.48 × 106 / 9.34 ± 3.95 × 103 / 1.68 ± 0.57 × 104
Rice paddy / RMgM108, Vietnam1 / (Xuan et al., 2011) / 2 / 2.71 ± 0.36 × 105 / 1.49 ± 1.73 × 103 / 1.28 ± 0.06 × 103
RRR14, Vietnam1 / (Xuan et al., 2011) / 2 / 2.30 ± 0.31 × 105 / 8.63 ± 1.28 × 102 / 7.84 ± 0.80 × 102
RRR, Vietnam1 / (Xuan et al., 2011) / 2 / 3.80 ± 1.36 × 105 / 1.35 ± 0.04 × 103 / 7.75 ± 0.59 × 102
RMgM 98, Vietnam1 / (Xuan et al., 2011) / 2 / 3.82 ± 2.23 × 105 / 2.16 ± 1.45 × 103 / 3.11 ± 2.20 × 103
Wetland / Fyris fen, Sweden1 / (unpublished) / 3 / 5.58 ± 3.56 × 105 / 6.82 ± 4.60 × 103 / 7.93 ± 4.66 × 103
Ekeby, Sweden1 / (Kjellin et al., 2007) / 3 / 3.75 ± 1.39 × 105 / 1.31 ± 0.44 × 103 / 6.02 ± 1.70 × 102
Lake sediment / Erken limnetic, Sweden1 / (unpublished) / 3 / 4.66 ± 1.43 × 105 / 3.77 ± 0.88 × 103 / 7.79 ± 1.38 × 103
Erken littoral, Sweden1 / (unpublished) / 3 / 3.81 ± 2.16 × 105 / 2.00 ± 1.09 × 103 / 4.90 ± 2.76 × 103
Composted waste / Compost, Sweden1 / (Jarvis et al., 2009) / 3 / 2.13 ± 0.64 × 106 / 6.16 ± 0.88 × 103 / 6.24 ± 2.74 × 101
Biofilm / Bartoli, Italy1 / (Granhall et al., 2010) / 3 / 9.98 ± 3.00 × 105 / 1.03 ± 0.23 × 103 / 2.59 ± 0.63 × 103
ASP WWTPb / Ekilstuna, Sweden3 / (Rodriguez-Caballero et al., 2012) / 2 / 3.14 ± 1.44 × 105 / 4.90 ± 2.96 × 103 / 4.26 ± 1.43 × 103
Västerås, Sweden3 / (Rodriguez-Caballero et al., 2012) / 2 / 5.66 ± 3.77 × 105 / 9.10 ± 6.88 × 103 / 6.43 ± 4.97 × 103
HenriksdalB2, Sweden1 / (Hallin et al., 2005) / 3 / 6.55 ± 2.27 × 105 / 6.88 ± 3.85 × 103 / 1.85 ± 0.87 × 104
HenriksdalB3, Sweden1 / (Hallin et al., 2005) / 3 / 3.18 ± 0.33 × 105 / 3.38 ± 0.41 × 103 / 7.56 ± 0.84 × 103

aNot detected, bActivated sludge process in wastewater treatment plant (municipal), cExtraction technique of genomic DNA is indicated as follows: (1) Fast DNA

Spin kit for Soil (MP Biomedical); (2) extracted using ISO protocol; (3) Qiagen kit with modified protocol for DNA extraction from Gram positive bacteria

References

Cheneby D, et al. (2010) Role of plant residues in determining temporal patterns of the activity, size, and structure of nitrate reducer communities in soil. Appl Environ Microbiol76:7136-7143.

Enwall K, et al. (2007) Long-term impact of fertilization on activity and composition of bacterial communities and metabolic guilds in agricultural soil. Soil Biol Biochem39: 106-115.

Enwall K, Throbäck IN, Stenberg M, Söderström M, & Hallin S (2010) Soil resources influence spatial patterns of denitrifying communities at scales compatible with land management. Appl Environ Microbiol76: 2243-2250.

Granhall U, et al. (2010) Bacterial community diversity in paper mills processing recycled paper. J Ind Microbiol Biotechnol37: 1061-1069.

Hallin S, et al. (2005) Community survey of ammonia-oxidizing bacteria in full-scale activated sludge processes with different solids retention time. J Appl Microbiol99:629-640.

Jarvis A, et al. (2009) Activity and composition of ammonia oxidizing bacterial communities and emission dynamics of NH3 and N2O in a compost reactor treating organic household waste. J Appl Microbiol106:1502-1511.

Kjellin J, Hallin S, & Wörman A (2007) Spatial variations in denitrification activity in wetland sediments explained by hydrology and denitrifying community structure. Water Res41:4710-4720.

Petric I, et al. (2011) Inter-laboratory evaluation of the ISO standard 11063; “Soil quality - Method to directly extract DNA from soil samples”. J Microbiol Methods84:454-460.

Philippot L, Piutti S, Martin-Laurent F, Hallet S, & Germon JC (2002) Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl Environ Microbiol68:6121-6128.

Philippot L, Andert J, Jones CM, Bru D, & Hallin S (2011) Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Global Change Biol 17:1497-1504.

Rodriguez-Caballero A. Hallin, S, Påhlson C., Odlare M., Dahlquist E. (2012) Ammonia oxidizing bacterial community composition and process performance in wastewater treatment plants under low temperature conditions. Water Sci Technol65:197-204.

Stres B, Philippot L, Faganeli J, Tiedje JM (2010). Frequent freeze-thaw cycles yield diminished yet resistant and responsive microbial communities in two temperate soils: a laboratory experiment. FEMS Microbiol Ecol, 74: 323–335.

Throbäck IN, Enwall K, Jarvis A, & Hallin S (2004) Reassessing PCR primers targeting nirS, nirK and nosZ genes for community surveys of denitrifying bacteria with DGGE. FEMS Microbiol Ecol49:401-417.

Xuan DT, et al. (2011) Different crop rotation systems as drivers of change in soil bacterial community structure and yield of rice, Oryza sativa. Biol Fertil Soils48:217-225