TABLE S6Hypergeometric probability analysis of genes determined to be >2.5-fold downregulated in sputum compared to in vitro H37Rvgrowth by amplified microarray

Subset of genes enriched / No. genes / Hypergeometric
p value1
2.5 fold repressed NRP2 v Aerobic ANOVA p0.05 B+H This study / 56 / 3.80E-36
Intracellular_Murine Macrophage Repressed Schnappinger et al., 2003 [3] / 64 / 8.16E-35
Slow Growth Repressed >1.2 fold_BCG Beste et al., 2007 [9] / 50 / 8.75E-20
Nutrient Starvation Repressed 4 or 24 or 96 h Betts et al., 2002 [10] / 81 / 4.61E-14
Murine hollow fibre model Repressed v log phase H37Rv Karakousis et al., 2004 [12] / 21 / 1.40E-11
sigE repressed genes in sigE KO v WT H37Rv Manganelli et al., 2001 [13] / 18 / 3.57E-11
II.A.1 Ribosomal protein synthesis and modification [2] / 21 / 3.96E-10
I.B.6.a Aerobic [2] / 14 / 7.47E-09
PhoP regulon genes induced in WT v mutant Walters et al., 2006 [17] / 16 / 4.84E-08
sigD regulon Calamita et al., 2005 [11] / 18 / 2.08E-07
2.5 fold repressed NRP1 v Aerobic ANOVA p0.05 B+H This study / 7 / 4.24E-07
Stationary Phase Low Glu Induced genes Hampshire et al., 2004 [18] / 40 / 5.57E-07
I.B.6 Respiration [2] / 17 / 1.13E-06
I.B.8 ATP-proton motive force [2] / 6 / 4.44E-06
sigD Repressed knockout v WT H37Rv Raman et al., 2004 [22] / 14 / 5.33E-06
Genes required for mycobacterial growth in vitro Sassetti et al., 2003 [14] / 75 / 7.25E-06
II.A Synthesis and modification of macromolecules [2] / 34 / 2.20E-05
I.B Energy metabolism [2] / 42 / 2.53E-05
Nutrient Starvation Induced 4 or 24 or 96 h Betts et al., 2002 [10] / 55 / 8.30E-05
1 Small molecule metabolism [2] / 102 / 0.00342
II.A.6 Protein translation and modification [2] / 5 / 0.00385
I.F Purines, pyrimidines, nucleosides and nucleotides [2] / 11 / 0.0047
Genes Required for Survival in Macrophages. Rengarajan et al., 2005 [23] / 18 / 0.00611
I.B.1 Glycolysis [2] / 4 / 0.00982
I.H.2 Modification of fatty and mycolic acids [2] / 4 / 0.0176
IV.A Virulence [2] / 7 / 0.0219
BALBc vs 7H9 broth at 45 days Repressed Talaat et al., 2007 [15] / 18 / 0.0228
I.H Lipid biosynthesis [2] / 10 / 0.0229
I.H.1 Synthesis of fatty and mycolic acids [2] / 5 / 0.0424
dosR-dependent genes repressed in vitro Kendall et al., 2004 [5] / 4 / 0.0505
I.F.1 Purine ribonucleotide biosynthesis [2] / 4 / 0.0595

1A cut-off of p<0.05 was applied.

REFERENCES

2.Cole ST, et al. (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature, 393: 537-544.

3.Schnappinger D, et al. (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J Exp Med 198: 693-704.

4.Park HD, et al. (2003) Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48: 833-843.

5.Kendall SL, et al. (2004) The Mycobacterium tuberculosis dosRS two-component system is induced by multiple stresses. Tuberculosis 84: 247-255.

6.Ohno H, et al. (2003) The effects of reactive nitrogen intermediates on gene expression in Mycobacterium tuberculosis. Cell Microbiol 5: 637-648.

7.Voskuil MI, Visconti KC , Schoolnik GK (2004) Mycobacterium tuberculosis gene expression during adaptation to stationary phase and low-oxygen dormancy. Tuberculosis 84: 218-227.

8.Bacon J, et al. (2004) The influence of reduced oxygen availability on pathogenicity and gene expression in Mycobacterium tuberculosis. Tuberculosis 84: 205-217.

9.Beste DJ, et al. (2007) Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 189: 3969-3976

10.Betts JC, Lukey PT, Robb LC, McAdam RA, Duncan K (2002)

Evaluation of a nutrient starvation model of Mycobacterium tuberculosis persistence by gene and protein expression profiling. Mol Microbiol, 43: 717-731.

11.Calamita H, et al. (2005) The Mycobacterium tuberculosis SigD sigma factor controls the expression of ribosome-associated gene products in stationary phase and is required for full virulence. Cell Microbiol 7: 233-244.

12.Karakousis PC, et al. (2004) Dormancy phenotype displayed by extracellular Mycobacterium tuberculosis within artificial granulomas in mice.J Exp Med 200: 647-657.

13.Manganelli R, Voskuil MI, Schoolnik GK, Smith, I (2001)

The Mycobacterium tuberculosis ECF sigma factor sigmaE: role in global gene expression and survival in macrophages. Mol Microbiol 41: 423-437.

14.Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48: 77-84.

15.Talaat AM, et al. (2007) Mycobacterial bacilli are metabolically active during chronic tuberculosis in murine lungs: Insights from genome-wide transcriptional profiling. J Bacteriol 189: 4265-4284..

16.Fisher MA, Plikaytis BB, Shinnick TM (2002) Microarray analysis of the Mycobacterium tuberculosis transcriptional response to the acidic conditions found in phagosomes. J Bacteriol 184: 4025-4032.

17.Walters SB, et al. (2006) The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol Microbiol 60: 312-330.

18.Hampshire T, et al. (2004) Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis 84: 228-238.

19.Sun R, et al. (2004) Mycobacterium tuberculosis ECF sigma factor sigC is required for lethality in mice and for the conditional expression of a defined gene set. Mol Microbiol. 52: 25-38.

20.Stewart GR, Patel J, Robertson BD, Rae A, Young DB (2005)

Mycobacterial mutants with defective control of phagosomal acidification. PLoS Pathog 1: 269-278.

21.Van der Geize R, et al. (2007) A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages. Proc Natl Acad Sci U S A 104: 1947-1952.

22.Raman S, Hazra R, Dascher CC, Husson RN (2004)

Transcription regulation by the Mycobacterium tuberculosis alternative sigma factor SigD and its role in virulence. J Bacteriol 186: 6605-6616.

23.Rengarajan J, Bloom BR, Rubin EJ (2005) Genome-wide requirements for Mycobacterium tuberculosis adaptation and survival in macrophages. Proc Natl Acad Sci U S A 102: 8327-8332.