References for Table S1:
Adamo, P., Crisafulli, P., Giordano, S., Minganti, V., Modenesi, P., Monaci, F., et al. (2007). Lichen and moss bags as monitoring devices in urban areas. Part II: Trace element content in living and dead biomonitors and comparison with synthetic materials. Environmental Pollution, 146, 392–399.
Adamo, P., Giordano, S., Vingiani, S., Cobianchi, R. C., & Violante, P. (2003). Trace element accumulation by moss and lichen exposed in bags in the city of Naples (Italy). Environmental Pollution, 122, 91–103.
Bajpai, R., Shukla, V., & Upreti, D. K. (2013). Impact assessment of anthropogenic activities on air quality, using lichen Remototrachyna awasthii as biomonitor. International Journal of Environmental Science and Technology, 10, 1287–1294.
Bajpai, R., & Upreti, D. K. (2012). Accumulation and toxic effect of arsenic and other heavy metals in a contaminated area of West Bengal , India , in the lichen Pyxine cocoes (Sw.) Nyl. Ecotoxicology and Environmental Safety, 83, 63–70.
Bargagli, R., Agnorelli, C., Borghini, F., & Monaci, F. (2005). Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environmental Science and Technology, 39, 8150–8155.
Bargagli, R., Monaci, F., Borghini, F., Bravi, F., & Agnorelli, C. (2002). Mosses and lichens as biomonitors of trace metals. A comparison study on Hypnum cupressiforme and Parmelia caperata in a former mining district in Italy. Environmental Pollution, 116, 279-287.
Bari, A., Rosso, A., Minciardi, M. R., Troiani, F., & Piervittori, R. (2001). Analysis of heavy metals in atmospheric particulates in relation to their bioaccumulation in explanted Pseudevernia furfuracea thalli. Environmental Monitoring and Assessment, 69, 205–220.
Basile, A., Sorbo, S., Aprile, G., Conte, B., & Castaldo Cobianchi, R. (2008). Comparison of the heavy metal bioaccumulation capacity of an epiphytic moss and an epiphytic lichen. Environmental Pollution, 151, 401–407.
Bergamaschi, L., Rizzo, E., Giaveri, G., Profumo, A., Loppi, S., & Gallorini, M. (2004). Determination of baseline element composition of lichens using samples from high elevations. Chemosphere, 55, 933-939.
Boamponsem, L. K., Adam, J. I., Dampare, S. B., Nyarko, B. J. B., & Essumang, D. K. (2010). Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 268, 1492–1501.
Cansaran-Duman, D., Atakol, O., Atasoy, I., Kahya, D., Aras, S., & Beyaztaş, T. (2009). Heavy metal accumulation in Pseudevernia furfuracea (L.) Zopf from the Karabük iron-steel factory in Karabük, Turkey. Zeitschrift fur Naturforschung - Section C Journal of Biosciences, 64, 717–723.
Carignan, J., Simonetti, A., & Gariépy, C. (2002). Dispersal of atmospheric lead in northeastern North America as recorded by epiphytic lichens. Atmospheric Environment, 36, 3759–3766.
Carreras, H. A., & Pignata, M. L.(2002). Biomonitoring of heavy metals and air quality in Cordoba City , Argentina , using transplanted lichens. Environmental Pollution, 117, 77–87.
Cicek, A., Koparal, A. S., Aslan, A., & Yazici, K. (2008). Accumulation of heavy metals from motor vehicles in transplanted lichens in an urban area. Communications in Soil Science and Plant Analysis, 39, 168–176.
Cloquet, C., Carignan, J., & Libourel, G. (2006). Isotopic composition of Zn and Pb atmospheric depositions in an urban/periurban area of northeastern France. Environmental Science and Technology, 40, 6594–6600.
Cloquet, C., de Muynck, D., Signoret, J., & Vanhaecke, F. (2009). Urban/Peri-urban aerosol survey by determination of the concentration and isotopic composition of Pb collected by transplanted lichen Hypogymnia physodes. Environmental Science and Technology, 43, 623-629.
Cloquet, C., Estrade, N., & Carignan, J. (2015). Ten years of elemental atmospheric metal fallout and Pb isotopic composition monitoring using lichens in northeastern France. Comptes Rendus - Geoscience, 347, 257–266.
Darnajoux, R., Lutzoni, F., Miadlikowska, J., & Bellenger, J.-P. (2015). Determination of elemental baseline using peltigeralean lichens from Northeastern Canada (Québec): Initial data collection for long term monitoring of the impact of global climate change on boreal and subarctic area in Canada. Science of the Total Environment, 533, 1–7.
Demiray, A. D., Yolcubal, I., Akyol, N. H., & Çobanoǧlu, G. (2012). Biomonitoring of airborne metals using the lichen Xanthoria parietina in Kocaeli Province, Turkey. Ecological Indicators, 18, 632–643.
Dongarrà, G., & Varrica, D. (1998). The presence of heavy metals in air particulate at Vulcano island (Italy). Science of the Total Environment, 212, 1–9.
Doucet, F. J., & Carignan, J. (2001). Atmospheric Pb isotopic composition and trace metal concentration as revealed by epiphytic lichens: An investigation related to two altitudinal sections in eastern France. Atmospheric Environment, 35, 3681–3690.
Forbes, P. B. C., Thanjekwayo, M., Okonkwo, J. O., Sekhula, M., & Zvinowanda, C. (2009). Lichens as biomonitors for manganese and lead in Pretoria, South Africa. Fresenius Environmental Bulletin, 18, 609–614.
Frati, L., Brunialti, G., & Loppi, S. (2005). Problems related to lichen transplants to monitor trace element deposition in repeated surveys: A case study from central Italy. Journal of Atmospheric Chemistry, 52, 221–230.
Gandois, L., Agnan, Y., Leblond, S., Séjalon-Delmas, N., Le Roux, G., & Probst, A. (2014). Use of geochemical signatures, including rare earth elements, in mosses and lichens to assess spatial integration and the influence of forest environment. Atmospheric Environment, 95, 96–104.
Giordano, S., Adamo, P., Sorbo, S., & Vingiani, S. (2005). Atmospheric trace metal pollution in the Naples urban area based on results from moss and lichen bags. Environmental Pollution, 136, 431–442.
Giordano, S., Adamo, P., Spagnuolo, V., & Vaglieco, B. M. (2010). Instrumental and bio-monitoring of heavy metal and nanoparticle emissions from diesel engine exhaust in controlled environment. Journal of Environmental Sciences, 22, 1357–1363.
Godinho, R. M., Wolterbeek, H. Th., Verburg, T., & Freitas, M. C. (2008). Bioaccumulation behaviour of transplants of the lichen Flavoparmelia caperata in relation to total deposition at a polluted location in Portugal. Environmental Pollution, 151, 318–325.
Guerra M. B. B., Amarasiriwardena D., Schaefer C. E. G. R., Pereira, C. D., Spielmann A. A., Nóbrega, J. A., et al. (2011). Biomonitoring of lead in Antarctic lichens using laser ablation inductively coupled plasma mass spectrometry. Journal of Analytical Atomic Spectrometry, 26, 2238-2246.
Gür, F., & Yaprak, G. (2011). Biomonitoring of metals in the vicinity of Soma coal-fired power plant in western Anatolia, Turkey using the epiphytic lichen, Xanthoria parietina. Journal of Environmental Science and Health. Part A, Toxic/hazardous Substances & Environmental Engineering, 46, 1503–1511.
Hanedar, A. (2015). Assessment of airborne heavy metal pollution in soil and lichen in the Meric-Ergene Basin, Turkey. Environmental Technology, 36, 2588–2602.
Ite, A. E., Udousoro, I. I., & Ibok, U. J. (2014). Distribution of some atmospheric heavy metals in lichen and moss samples collected from Eket and Ibeno local government areas of Akwa Ibom State, Nigeria. American Journal of Environmental Protection, 2, 22–31.
Jeran, Z., Jaćimović, R., Batič, F., & Mavsar, R. (2002). Lichens as integrating air pollution monitors. Environmental Pollution, 120, 107–113.
Jeran, Z., Jaćimović, R., Batič, F., Smodiš, B., & Wolterbeek, H. Th. (1996). Atmospheric heavy metal pollution in Slovenia derived from results for epiphytic lichens. Fresnius Journal of Analytical Chemistry, 354, 681–687.
Juichang, R., Freedman, B., Coles, C., Zwicker, B., Holzbecker, J., & Chatt, A. (1995). Vanadium contamination of lichens and tree foliage in the vicinity of three oil-fired power plants in eastern Canada. Journal of the Air & Waste Management Association, 2247, 461–464.
Kansanen, P. H., & Venetvaara, J. (1991). Comparison of biological collectors of airborne heavy metals near ferrochrome and steel works. Water, Air and Soil Pollution, 60, 337–359.
Koz, B., Celik, N., & Cevik, U. (2010). Biomonitoring of heavy metals by epiphytic lichen species in Black Sea region of Turkey. Ecological Indicators, 10, 762–765.
Kularatne, K. I. A., & De Freitas, C. R. (2013). Epiphytic lichens as biomonitors of airborne heavy metal pollution. Environmental and Experimental Botany, 88, 24–32.
Lippo, H., Poikolainen, J., & Kubin, E. (1995). The use of moss, lichen and pine bark in the nationwide monitoring of atmospheric heavy metal deposition in Finland. Water, Air, and Soil Pollution, 85, 2241–2246.
Loppi, S., Frati, L., Paoli, L., Bigagli, V., Rossetti, C., Bruscoli, C., & Corsini, A. (2004). Biodiversity of epiphytic lichens and heavy metal contents of Flavoparmelia caperata thalli as indicators of temporal variations of air pollution in the town of Montecatini Terme (central Italy). Science of the Total Environment, 326, 113–122.
Loppi, S., & Pirintsos, S. A. (2003). Epiphytic lichens as sentinels for heavy metal pollution at forest ecosystems (central Italy). Environmental Pollution, 121, 327–332.
Loppi, S., Riccobono, F., Zhang, Z. H., Savic, S., Ivanov, D., & Pirintsos, S. A. (2003). Lichens as biomonitors of uranium in the Balkan area. Environmental Pollution, 125, 277–280.
Mendil, D., Çelik, F., Tuzen, M., & Soylak, M. (2009). Assessment of trace metal levels in some moss and lichen samples collected from near the motorway in Turkey. Journal of Hazardous Materials, 166, 1344–1350.
Monaci, F., Fantozzi, F., Figueroa, R., Parra, O., & Bargagli, R. (2012). Baseline element composition of foliose and fruticose lichens along the steep climatic gradient of SW Patagonia (Aisén Region, Chile). Journal of Environmental Monitoring, 14, 2309–2316.
Nakajima, H., Yamamoto, Y., Yoshitani, A., & Itoh, K. (2013). Effect of metal stress on photosynthetic pigments in the Cu-hyperaccumulating lichens Cladonia humilis and Stereocaulon japonicum growing in Cu-polluted sites in Japan. Ecotoxicology and Environmental Safety, 97, 154–159.
Ng, O.-H., Tan, B. C., & Obbard, J. P. (2005). Lichens as bioindicators of atmospheric heavy metal pollution in Singapore. Environmental Monitoring and Assessment, 123, 63–74.
Osyczka, P., Rola, K., & Jankowska, K. (2016). Vertical concentration gradients of heavy metals in Cladonia lichens across different parts of thalli. Ecological Indicators, 61, 766–776.
Pandey, V., Upreti, D. K., Pathak, R., Pal, A. (2002). Heavy metal accumulation in lichens from the Hetauda industrial area Narayani zone Makwanpur district, Nepal. Environmental Monitoring and Assessment, 73, 221-228.
Paoli, L., Corsini, A., Bigagli, V., Vannini, J., Bruscoli, C., & Loppi, S. (2012). Long-term biological monitoring of environmental quality around a solid waste landfill assessed with lichens. Environmental Pollution, 161, 70–75.
Paoli, L., Grassi, A., Vannini, A., Maslaňáková, I., Bil’ová, I., Bačkor, M., et al. (2015). Epiphytic lichens as indicators of environmental quality around a municipal solid waste landfill (C Italy). Waste Management, 42, 67–73.
Paoli, L., Guttová, A., Grassi, A., Lackovičová, A., Senko, D., & Loppi, S. (2014). Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecological Indicators, 40, 127–135.
Parzych, A., Astel, A., Zduńczyk, A., & Surowiec, T. (2016). Evaluation of urban environment pollution based on the accumulation of macro- and trace elements in epiphytic lichens. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 51, 297–308.
Pawlik-Skowrońska, B., & Bačkor, M. (2011). Zn/Pb-tolerant lichens with higher content of secondary metabolites produce less phytochelatins than specimens living in unpolluted habitats. Environmental and Experimental Botany, 72, 64–70.
Pino, A., Alimonti, A., Conti, M. E., & Bocca, B. (2010). Iridium, platinum and rhodium baseline concentration in lichens from Tierra del Fuego (south Patagonia, Argentina). Journal of Environmental Monitoring, 12, 1857–1863.
Pollard, A. S., Williamson, B. J., Taylor, M., Purvis, W. O., Goossens, M., Reis, S., et al. (2015). Integrating dispersion modelling and lichen sampling to assess harmful heavy metal pollution around the Karabash copper smelter, Russian Federation. Atmospheric Pollution Research, 6, 939–945.
Ramzaev, V., Barkovsky, A., Gromov, A., Ivanov, S., & Kaduka, M. (2014). Epiphytic fruticose lichens as biomonitors for retrospective evaluation of the 134Cs/137Cs ratio in Fukushima fallout. Journal of Environmental Radioactivity, 138, 177–185.
Rusu, A. M., Chimonides, P. D. J., Jones, G. C., Garcia-Sanchez, R., & Purvis, O. W. (2006). Multi-element including rare earth content of lichens, bark soils, and waste following industrial closure. Environmental Science and Technology, 40, 4599–4604.
Salo, H., Bućko, M. S., Vaahtovuo, E., Limo, J., Mäkinen, J., & Pesonen, L. J. (2012). Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. Journal of Geochemical Exploration, 115, 69–81.
Sensen, M., & Richardson, D. H. S. (2002). Mercury levels in lichens from different host trees around a chlor-alkali plant in New Brunswick, Canada. Science of the Total Environment, 293, 31–45.
Sert, E., Uĝur, A., Özden, B., Saç, M. M., & Camgöz, B. (2011). Biomonitoring of 210Po and 210Pb using lichens and mosses around coal-fired power plants in Western Turkey. Journal of Environmental Radioactivity, 102, 535–542.
Sloof, J. E. (1995). Lichens as quantitative biomonitors for atmospheric trace-element deposition, using transplants. Atmospheric Environment, 29, 11–20.
Søndergaard, J., Johansen, P., Asmund, G., & Rigét, F. (2011). Trends of lead and zinc in resident and transplanted Flavocetraria nivalis lichens near a former lead-zinc mine in west Greenland. Science of the Total Environment, 409, 4063–4071.
Spiro, B., Weiss, D. J., Purvis O. W., Mikhailova, I., Williamson, B. J., Coles, B. J., et al. (2004). Lead isotopes in lichen transplants around a Cu smelter in Russia determined by MC-ICP-MS reveal transient records of multiple sources. Environmental Science and Technology, 38, 6522-6528.
Tsikritzis, L. I., Ganatsios, S. S., Duliu, O. G., & Sawidis, T. D. (2002). Heavy metals distribution in some lichens, mosses, and trees in the vicinity of lignite power plants from west Macedonia, Greece. Journal of Trace and Microprobe Techniques, 20, 395–413.
Uğur, A., Özden, B., Saç, M. M., & Yener, G. (2003). Biomonitoring of 210Po and 210Pb using lichens and mosses around a uraniferous coal-fired power plant in western Turkey. Atmospheric Environment, 37, 2237–2245.
Upreti, D. K., & Pandey, V. (2000). Determination of heavy metals in lichens growing on different ecological habitats in Schirmacher Oasis, east Antarctica. Spectroscopy Letters, 33, 435–444.
Valeeva, E. I., & Moskovchenko, D. V. (2002). Trace-element composition of lichens as an indicator of atmospheric pollution in northern west Siberia. Polar Geography, 26, 249–269.
Varrica, D., Aiuppa, A., & Dongarrà, G. (2000). Volcanic and anthropogenic contribution to heavy metal content in lichens from Mt. Etna and Vulcano island (Sicily). Environmental Pollution, 108, 153–162.
Wen, H., & Carignan, J. (2009). Ocean to continent transfer of atmospheric Se as revealed by epiphytic lichens. Environmental Pollution, 157, 2790–2797.