Mass and Weight

Weight and mass - the difference

Mass and weight are two common often misused and misunderstood terms in mechanics and fluid mechanics.

The fundamental relation between the mass and the weight is defined by Newton's Second Law and can be expressed as

F = m a (1)

where

F= force (N)

m= mass (kg)

a= acceleration (m/s2)

Mass

Massis a measure of the amount of material in an object, being directly related to the number and type of atoms present in the object. Mass does not change with a body's position, movement or alteration of its shape, unless material is added or removed.

The mass is a fundamental property of an object, a numerical measure of its inertia and a fundamental measure of the amount of matter in the object.

Weight

Weightis thegravitational forceacting on a body mass. Transforming Newton's Second Law related to the weight as a force due to gravity can be expressed as

W = m g (2)

where

W =weight(N)

m=mass(kg)

g= acceleration of gravity (m/s2)

The handling of mass and weight depends on the systems of units that is used. The most common systems of units are the

·  International System -SI

·  British Gravitational System -BG

·  English Engineering System -EE

The International System -SI

In the SI system the mass unit is thekgand since the weight is a force - the weight unit is theNewton(N). Equation (2) for a body with 1 kg mass can be expressed as:

w = (1 kg) (9.807 m/s2)

=9.807(N) (2b)

where

9.807 m/s2= standard gravity close to earth in the SI system

As a result:

·  a 9.807 N force acting on a body with 1 kg mass will give the body an acceleration of 9.807 m/s2

·  a body with mass of 1 kg weighs 9.807 N

·  More about the SI System- A tutorial introduction to the SI-system.

The British Gravitational System -BG

The British Gravitational System (Imperial System) of units is used by engineers in the English-speaking world with the same relation to the foot - pound - second system as the meter kilogram - force second system (SI) has to the meter - kilogram - second system. For engineers who deals with forces, instead of masses, it's convenient to use a system that has as its base units length, time, and force, instead of length, time and mass.

The three base units in the Imperial system are the foot, the second, and the pound-force.

In the BG system the mass unit is theslugand is defined from the Newton's Second Law (1). The unit of mass, theslug, is derived from the pound-force by defining it as the mass that will accelerate at 1 foot per second per second when a 1 pound-force acts upon it:

1 lb = (1 slug)(1 ft/s2)

In other words, 1 lb (pound) force acting on 1 slug mass will give the mass an acceleration of 1 ft/s2.

The weight of the mass from equation (2) in BG units can be expressed as:

w (lb) = m (slugs) g (ft/s2)

With a standard gravity -g = 32.17405 ft/s2- the mass of 1 slug weights32.17405 lbf(pound-force).

The English Engineering System -EE

In the English Engineering system of units the primary dimensions are are force, mass, length, time and temperature. The units for force and mass are defined independently

·  the basic unit of mass ispound-mass(lbm)

·  the unit of force is thepound(lb) alternativelypound-force(lbf).

In the EE system1 lb of forcewill give a mass of1 lbma standard acceleration of32.17405 ft/s2.

Since the EE system operates with these units of force and mass, the Newton's Second Law can be modified to

F = m a / gc (3)

where

gc= a proportionality constant

or transformed to weight

w = m g / gc (4)

The proportionality constant gcmakes it possible to define suitable units for force and mass. We can transform (4) to

1 lbf= (1 lbm)(32.174 ft/s2) / gc

or

gc= (1 lbm)(32.174 ft/s2)/(1 lbf)

Since1 lbfgives a mass of1 lbman acceleration of32.17405 ft/s2and a mass of1 slugan acceleration of1 ft/s2, then

1 slug = 32.17405 lbm

Example - Weight versus Mass

A car's mass is1,644 kg. The weight can be calculated:

w= (1,644 kg)(9.807 m/s2)

= 16122.7 N

=16.1kN

- there is a force (weight) of16.1 kNbetween the car and the earth.

·  1 kg gravitation force = 9.81 N = 2.20462 lbf

What is the difference between mass and weight?

Answer:

Mass is the size of an object and weight is the amount of force gravity has on an object.
Mass is an intrinsic property of a body, as it remains the same everywhere in the universe.
Weight is variable due to change in the magnitude of the gravitational force applied by the earth.
Mass is scalar and has no direction dependency
Weight is vector and is directed towards the center of the earth
---
Mass is constant all the time. It is measured in kilograms (kg). Weight is mass X gravity, so on Earth 1 gram equals 10 Newtons (the measure of Weight). Weight depends on gravity. When you are 'weighing' yourself, you are really massing yourself - who gives their weight in Newtons? So both mass and weight will typically use kilograms.


Read more:http://wiki.answers.com/Q/What_is_the_difference_between_mass_and_weight#ixzz29ZRePLqy